Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp composite bentonite-β-cyclodextrin-nanoparticle sắt làm chất hấp phụ từ tính trong quá trình chiết tách pha rắn để phân tách axit nicotinic N-methylbetaine: một quy trình tối ưu hóa
Tóm tắt
Composite bentonite-β-cyclodextrin-nanoparticle sắt (Ben-βCD-INP) đã được tổng hợp, đặc trưng hóa và sử dụng như một chất hấp phụ chiết tách pha rắn từ tính (MSPE) đổi mới để tách và tiền nồng độ axit nicotinic N-methylbetaine (NAMB). Các điều kiện thí nghiệm để tìm các biến số quan trọng của quá trình hấp phụ NAMB trên Ben-βCD-INP bao gồm A: thời gian (1–10 phút), B: lượng chất hấp phụ (0.01–0.1 g), C: pH (1–8), và đối với quá trình desorption là A: nhiệt độ (60–100 °C), B: nồng độ (0.8–1.2 M), C: thời gian (5–15 phút), và D: thể tích (1–3 mL). Chất hấp phụ đóng góp đáng kể vào quá trình chiết tách. INP trong nanocomposite giúp dễ dàng loại bỏ chất hấp phụ nhờ có nam châm. Kỹ thuật chụp vi mô quét điện tử (SEM), phổ hồng ngoại biến đổi Fourier (FTIR), chụp vi sóng điện tử truyền qua (TEM), đo từ tính mẫu rung (VSM) và nhiễu xạ tia X (XRD) đã được sử dụng để đặc trưng hóa chất hấp phụ tổng hợp. Thiết kế thực nghiệm được sử dụng để tối ưu hóa các yếu tố ảnh hưởng đến quá trình chiết tách. NAMB trong mẫu huyết tương đã được chiết xuất và đánh giá bằng phương pháp HPLC-UV pha ngược. Kết quả cho thấy MSPE có khả năng chiết xuất NAMB hiệu quả. Quy trình HPLC-UV đã phát triển để xác định NAMB trong huyết tương người cho thấy mối quan hệ tuyến tính trong khoảng nồng độ từ 20 đến 10,000 ng/mL (r = 0.9998) với giới hạn phát hiện (LOD), giới hạn định lượng (LOQ) và độ phục hồi (%) lần lượt là 5, 18 ng/mL và 114%. Quy trình này đã được sử dụng thành công để xác định nồng độ NAMB trong huyết tương người. Nghiên cứu này cung cấp một chất hấp phụ nano-biomaterial kết hợp hứa hẹn trong công nghệ nano y sinh để đo chọn lọc thuốc hoặc thực phẩm bổ sung như NAMB từ huyết tương.
Từ khóa
#bentonite-β-cyclodextrin-nanoparticle sắt #chất hấp phụ từ tính #chiết tách pha rắn #axit nicotinic #N-methylbetaine #HPLC-UVTài liệu tham khảo
Mohamadi N, Sharififar F, Pournamdari M, Ansari M (2018) A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J Dietary Supple 15(2):207–222
Lorigooini Z, Sadeghi Dehsahraei K, Bijad E, Habibian Dehkordi S, Amini-Khoei H (2020) Trigonelline through the attenuation of oxidative stress exerts antidepressant- and anxiolytic-like effects in a mouse model of maternal separation stress. Pharmacology 105(5–6):289–299. https://doi.org/10.1159/000503728
Laila O, Murtaza I, Abdin MZ, Ahmad S, Khan MS (2019) Development and validation of a high-performance thin-layer chromatography based method for the quantification of trigonelline in Fenugreek (Trigonella foenum-graecum) seeds. JPC J Planar Chromatogr - Mod TLC 32(2):95–102. https://doi.org/10.1556/1006.2019.32.2.3
Zhang J, Liu D, Meng X, Shi Y, Wang R, Xiao D, He H (2017) Solid phase extraction based on porous magnetic graphene oxide/β-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. J Chromatogr A 1524:49–56. https://doi.org/10.1016/j.chroma.2017.09.074
Midttun Ø, Ulvik A, Nygård O, Ueland PM (2018) Performance of plasma trigonelline as a marker of coffee consumption in an epidemiologic setting. Am J Clin Nutr 107(6):941–947. https://doi.org/10.1093/ajcn/nqy059
Wen C, Lin C, Cai X, Ma J, Wang X (2014) Determination of sec-O-glucosylhamaudol in rat plasma by gradient elution liquid chromatography–mass spectrometry. J Chromatogr B 944:35–38. https://doi.org/10.1016/j.jchromb.2013.11.001
Frei RW, Kunz A, Pataki G, Plims T, Zürcher H (1970) The determination of nicotinic acid and nicotinamide by thin-layer chromatography and in situ fluorimetry. Anal Chim Acta 49(3):527–534. https://doi.org/10.1016/S0003-2670(00)86830-0
Shi L-n, Lin Y-M, Zhang X, Chen Z-l (2011) Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem Eng J 171(2):612–617. https://doi.org/10.1016/j.cej.2011.04.038
Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2013) Comparative evaluation of liquid–liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography–mass spectrometry determination of multiclass priority organic contaminants in wastewater. Talanta 117:382–391
Mohamadi N, Sharififar F, Ansari M, Pournamdari M, Rezaei M, Hassanabadi N (2021) Pharmacokinetic profile of diosgenin and trigonelline following intravenous and oral administration of fenugreek seed extract and pure compound in rabbit. J Asian Nat Prod Res 23(5):466–477
Bagheri AR, Ghaedi M (2020) Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples. J Pharma Anal. https://doi.org/10.1016/j.jpha.2020.02.006
Mohamadi N, Sharififar F, Pournamdari M, Ansari M (2020) Determination of trigonelline in human plasma by magnetic solid-phase extraction: a pharmacokinetic study. J Nanomed 16(4):323–333
Bhati A, Desai RP, Ramchand C (2017) Enhancement in recovery of drugs with high protein binding efficiency from human plasma using magnetic nanoparticles. J Pharma Biomed Anal 143:277–284
Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D (2011) Biocompatibility of Fe3O4@ Au composite magnetic nanoparticles in vitro and in vivo. J Int J Nanomed 6:2805
Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Khan MR (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study. Sustain Chem Pharm 20:100379
Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, ALOthman ZA (2021) Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol brilliant blue r dye removal. J Polym Environ. https://doi.org/10.1007/s10924-021-02160-z
Abdulhameed AS, Hum NNMF, Rangabhashiyam S, Jawad AH, Wilson LD, Yaseen ZM, Al-Kahtani AA, ALOthman ZA (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Eng J Environ Chem 9(4):105530
Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah M, Nawawi W, Alothman ZA, Khan MR (2021) Fabrication of schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Poly Environ. https://doi.org/10.1007/s10924-021-02160-z
Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F, Mollazadeh N, Shekari N (2014) Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. J Analytica Chimica Acta 844:80–89
Kaya A, Ören AH (2005) Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater 125(1):183–189. https://doi.org/10.1016/j.jhazmat.2005.05.027
Lee JY, Lee HK (2004) Characterization of organobentonite used for polymer nanocomposites. Mater Chem Phys 85(2):410–415. https://doi.org/10.1016/j.matchemphys.2004.01.032
Yang M, Wu X, Xi X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197:1064–1072. https://doi.org/10.1016/j.foodchem.2015.11.107
Jarrah N, Mu’azu ND, Zubair M, Al-Harthi M (2020) Enhanced adsorptive performance of Cr(VI) onto layered double hydroxide-bentonite composite: Isotherm, kinetic and thermodynamic studies. Sep Sci Technol 55(11):1897–1909. https://doi.org/10.1080/01496395.2019.1614955
Totea A-M, Sabin J, Dorin I, Hemming K, Laity PR, Conway BR, Waters L, Asare-Addo K (2020) Thermodynamics of clay–drug complex dispersions: Isothermal titration calorimetry and high-performance liquid chromatography. J Pharma Anal 10(1):78–85. https://doi.org/10.1016/j.jpha.2019.12.001
Shahwan T, Üzüm Ç, Eroğlu AE, Lieberwirth I (2010) Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl Clay Sci 47(3):257–262. https://doi.org/10.1016/j.clay.2009.10.019
Das D, Gupta U, Das AK (2012) Recent developments in solid phase extraction in elemental speciation of environmental samples with special reference to aqueous solutions. TrAC, Trends Anal Chem 38:163–171. https://doi.org/10.1016/j.trac.2011.01.020
Duman O, Tunç S (2009) Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Micro Meso Mater 117(1):331–338. https://doi.org/10.1016/j.micromeso.2008.07.007
He M, Huang L, Zhao B, Chen B, Hu B (2017) Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Anal Chim Acta 973:1–24. https://doi.org/10.1016/j.aca.2017.03.047
Zhang J, Liu D, Shi Y, Sun C, Niu M, Wang R, Hu F, Xiao D, He H (2017) Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B 1068–1069:24–32. https://doi.org/10.1016/j.jchromb.2017.09.046
Abdelaali M, Fatiha M, Leila N, Nora M, Mouna C, Sakina H, Eddine KD (2017) Computational approach in the study of the inclusion processes of Thymol with β-cyclodextrin. J Mol Liq 242:714–721. https://doi.org/10.1016/j.molliq.2017.07.021
Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD (2017) Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohyd Polym 163:1–9. https://doi.org/10.1016/j.carbpol.2016.11.091
Orolínová Z, Mockovčiaková A (2009) Structural study of bentonite/iron oxide composites. Mater Chem Phys 114(2):956–961. https://doi.org/10.1016/j.matchemphys.2008.11.014
Zhang Y, Zhang R, Yang X, Qi H, Zhang C (2019) Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharma Anal 9(1):9–19. https://doi.org/10.1016/j.jpha.2018.11.004
Das S, Subuddhi U (2019) Controlled delivery of ibuprofen from poly(vinyl alcohol)−poly(ethylene glycol) interpenetrating polymeric network hydrogels. J Pharma Anal 9(2):108–116. https://doi.org/10.1016/j.jpha.2018.11.007
Sun Q, Fang S, Fang Y, Qian Z, Feng H (2017) Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta 167:513–519. https://doi.org/10.1016/j.talanta.2017.02.060
Wan D, Wang G, Li W, Wei X (2017) Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity. Appl Surf Sci 413:398–407. https://doi.org/10.1016/j.apsusc.2017.03.265
Lou Z, Zhou Z, Zhang W, Zhang X, Hu X, Liu P, Zhang H (2015) Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: synthesis, characterization, mechanism, kinetics and regeneration. J Taiwan Inst Chem Eng 49:199–205. https://doi.org/10.1016/j.jtice.2014.11.007
Zuzana D, Erika F, Bekényiová A (2017) Bentonite/iron oxide magnetic composites: characterization and application as pb (ii) adsorbents. Arhiv za Tehnicke Nauke/Archives for Technical Sciences 16(1):65–75. https://doi.org/10.7251/afts.2017.0916.065D
Soliemanzadeh A, Fekri M (2017) The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): effect of relative parameters and soil experiments. Microporous Mesoporous Mater 239:60–69. https://doi.org/10.1016/j.micromeso.2016.09.050
Pooresmaeil M, Namazi H, Salehi R (2020) Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohyd Polym 246:116658. https://doi.org/10.1016/j.carbpol.2020.116658
Abdolmohammad-Zadeh H, Talleb Z (2015) Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid. Talanta 134:387–393. https://doi.org/10.1016/j.talanta.2014.11.054
Hashemian M, Ghasemi-Kasman M, Ghasemi S, Akbari A, Moalem-Banhangi M, Zare L, Ahmadian SR (2019) Fabrication and evaluation of novel quercetin-conjugated Fe3O4–β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomed 14:6481
Khoobi M, Khalilvand-Sedagheh M, Ramazani A, Asadgol Z, Forootanfar H, Faramarzi MA (2016) Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. J Chem Tech Biotech 91(2):375–384
Mohammed AA, Israa SS (2018) Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ Tech Innova 10:162–174
Hamadi SA (2012) Effect of trigonelline and ethanol extract of Iraqi Fenugreek seeds on oxidative stress in alloxan diabetic rabbits. J Associa Arab Univers Basic App Sci 12(1):23–26
Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Poly Environ 28(3):1095–1105
Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int J Bio Macromol 146:530–539
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7(9):243
Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, Pan J (2014) Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 42:325–332
Pang H-Q, Tang Y-P, Cao Y-J, Tan Y-J, Jin Y, Shi X-Q, Huang S-L, Sun D-Z, Sun J, Tang Z-S (2017) Comparatively evaluating the pharmacokinetic of fifteen constituents in normal and blood deficiency rats after oral administration of Xin-Sheng-Hua Granule by UPLC–MS/MS. J Chromatogr B 1061:372–381
Caporaso N, Whitworth MB, Grebby S, Fisk ID (2018) Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res Int 106:193–203
Cheng Z-X, Jin-Jun W, Zhong-Qiu L, Na L (2013) Development of a hydrophilic interaction chromatography-UPLC assay to determine trigonelline in rat plasma and its application in a pharmacokinetic study. Chin J Nat Med 11(2):164–170
Lang R, Yagar EF, Eggers R, Hofmann T (2008) Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J Agric Food Chem 56(23):11114–11121