Synthesis of air-stable mixed bis-carboxylate titanocene complexes and their catalytic behaviors in cross-aldol and Mannich reactions

Springer Science and Business Media LLC - Tập 41 - Trang 731-738 - 2016
Jing Wang1, Xi Chen1, Xiu Wang1, Wei-Qiang Zhang1, Hua-Ming Sun1, Guo-Fang Zhang1, Ya Wu1, Zi-Wei Gao1
1Key Laboratory of Applied Surface and Colloid Chemistry, MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, China

Tóm tắt

Tunable organometallic Lewis acid catalysts were developed by combining salicylic acid (H2-Sal) with benzoic acid (H-Ben), 4-fluorobenzoic acid (H-BenF) and 3-thiophenic acid (H-Th), as coligands for mixed bis-carboxylate titanocene complexes. Three air-stable complexes [Cp2Ti(η1-HSal)(η1-Ben)] (1), [Cp2Ti(η1-HSal)(η1-BenF)] (2) and [Cp2Ti[η1-HSal][(η1-Th)] (3) were prepared in high yields by the reaction of salicylato titanocene chelate with carboxylate ligands. The mixed bis-carboxylate titanocene complexes were fully characterized by physicochemical and spectroscopic methods. Single-crystal X-ray diffraction studies revealed Ti–O(H-Sal) bond distances in 1, 2 and 3 of 1.972(3), 1.9245(18) and 1.912(5) Å, respectively, while the bond distances involving the coligands of 1, 2 and 3 are 1.908(3) Å (Ti–OBen), 1.9296(19) Å (Ti–OBenF) and 1.945(5) Å (Ti–OTh), respectively. These bis-carboxylate titanocene complexes showed satisfactory activities and selectivities in Mannich and cross-aldol reactions. Notably, complex 3 bearing the labile thiophene carboxylate ligand gave high yields with a diastereomer ratio (d.r.) as high as 1:99 for the direct Mannich reactions of benzaldehyde, cyclohexanone and aniline. In cross-aldol reaction of benzaldehyde and cyclohexanone, 1 and 2 successfully catalyzed the formation of double-aldol products in up to 99 % yield.

Tài liệu tham khảo

Beck W, Suenkel K (1988) Chem Rev 88:1405–1421

Rijt SHV, Peacock AFA, Johnstone RDL, Parsons S, Sadler PJ (2009) Inorg Chem 48:1753–1762

Kumar P, Gupta RK, Pandey DS (2014) Chem Soc Rev 43:707–733

Han YF, Jin GX (2014) Chem Soc Rev 43:2779–2823

Kim SB, Pike RD, Sweigart DA (2013) Acc Chem Res 46:2458–2497

Khusnutdinova JR, Milstein D (2015) Angew Chem Int Ed 54:12236–12273

Noffke AL, Habtemariam A, Pizarro AM, Sadler PJ (2012) Chem Commun 48:5219–5246

Li NB, Wang JY, Zhang XH, Qiu RH, Yin SF, Xu XH (2014) Dalton Trans 43:11696–11708

Qiu RH, Xu XH, Peng LF, Zhao YL, Li NB, Yin SF (2012) Chem Eur J 18:6172–6182

Li NB, Zhang XH, Xu XH, Chen Y, Qiu RH, Chen JY, Wang X, Yin SF (2013) Adv Synth Catal 355:2430–2440

Qiu RH, Yin SF, Zhang XW, Xia J, Xu XH, Luo SL (2009) Chem Commun 31:4759–4761

Ringenberg MR, Rauchfuss TB (2012) Eur J Inorg Chem 3:490–495

Yamamoto H, Futatsugi K (2005) Angew Chem Int Ed 44:1924–1942

Li PF, Yamamoto H (2011) Top Organomet Chem 37:161–183

Wang X, Wang ZH, Zhang GF, Zhang WQ, Wu Y, Gao ZW (2016) Eur J Org Chem 3:502–507

Gansäuer A, Winkler I (2008) Organometallics 27:5699–5707

Erker G, Kehr G, Froehlich R (2006) Coord Chem Rev 250:36–46

Gansäuer A, Franke D, Lauterbach T, Nieger M (2005) J Am Chem Soc 127:11622–11623

Wu Y, Chen C, Jia G, Zhu XY, Sun HM, Zhang GF, Zhang WQ, Gao ZW (2014) Chem Eur J 20:8530–8535

Hollis TK, Robinson NP, Bosnich B (1992) J Am Chem Soc 114:5464–5466

Hollis TK, Robinson NP, Bosnich B (1992) Organometallics 11:2745–2748

Gao ZW, Zhang CY, Dong MY, Gao LX, Zhang GF (2006) Appl Organometal Chem 20:117–124

Gigant K, Rammal A, Henry M (2001) J Am Chem Soc 123:11632–11637

Gao ZW, Hu DD, Gao LX, Zhang XL, Zhang ZT, Liang QQ (2001) J Organomet Chem 629:47–53

Döppert K, Sanchez-Delgado R, Klein H, Thewalt U (1982) J Organomet Chem 233:205–213

Hoffman DM, Chester ND, Fay RC (1983) Organometallics 2:48–52

Strunkina LI, Minacheva MK, Lyssenko KA, Klemenkova ZS, Volkonsky AY, Petrovskii PV, Burlakov VV, Shur VB (2003) Russ Chem Bull 52:1372–1375

Klein H, Thewalt U (1981) J Organomet Chem 206:69–75

Klein H, Thewalt U (1981) Z Anorg Allg Chem 476:62–68

Lu ZR, Gao SQ, Zhou Y, Wu S (1994) Chin J Appl Chem 11:28–32

Edwards DA, Mahon MF, Paget TJ, Summerhill NW (2001) Transit Methods Chem 26:116–119

Herrmann GS, Alt HG, Thewalt U (1990) J Organomet Chem 393:83–95

Edwards DA, Mahon MF, Paget TJ (1997) Polyhedron 16:25–31

Marques MMB (2006) Angew Chem Int Ed 45:348–352

Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471–5569

Trost BM, Jaratjaroonphong J, Reutrakul V (2006) J Am Chem Soc 128:2778–2779

Trost BM, Terrell LR (2003) J Am Chem Soc 125:338–339

Poulsen TB, Alemparte C, Saaby S, Bella M, Jørgensen KA (2005) Angew Chem Int Ed 44:2896–2899

Riadi Y, Mamouni R, Azzalou R, Boulahjar R, Abrouki Y, Haddad ME, Routier S, Guillaumet G, Lazar S (2010) Tetrahedron Lett 51:6715–6717

Brunelli NA, Venkatasubbaiah K, Jones CW (2012) Chem Mater 24:2433–2442

Giarrusso MA, Higham LT, Kreher UP, Mohan RS, Rosamilia AE, Scott JL, Strauss CR (2008) Green Chem 10:842–852

María PD, Bracco P, Castelhano LF, Bargeman G (2011) ACS Catal 1:70–75

Sheldrick GM (2008) Acta Crystallogr 64:112–122