Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance

Journal of Sol-Gel Science and Technology - Tập 72 Số 1 - Trang 92-99 - 2014
Keying Guo1, Xuhuang Chen1, Jianhua Han2, Zhifeng Liu2
1Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
2School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

Li YB, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131

Fujishima Akira, Honda Kenichi (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

Guo KY, Liu ZF, Zhou CL, Han JH, Zhao YF, Liu ZC, Li YJ, Cui T, Wang B, Zhang J (2014) Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Appl Catal B 154:27–35

Wolcott A, Smith WA, Kuyke TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

Sivula K, Formal FL, Grätzel M (2009) WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21:2862–2867

Hong SJ, Lee S, Jang JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

Weinhardt L, Blum M, Bär M (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082

Paracchino A, Laporte V, Sivula K (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858

Chung J, Myoung J, Oh J, Lim S (2010) Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J Phys Chem C 114:21360–21365

Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116

Dick KA, Deppert K, Larsson MW, Martensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384

Zhang QE, Chou TP, Russo B, Jenekhe SA, Cao GZ (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18:1654–1660

Gonzalez VI, Lira CM (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34

Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalyic properties of ZnO/CdS core-shell nanorods. J Phys Chem C 116:23653–23662

Plank NV, Snaith HJ, Ducati C, Bendall JS, Schmidt-mende L, Welland ME (2008) A simple low temperature synthesis route for ZnO–MgO core-shell nanowires. Nanotechnology 19:1–8

Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A (2008) Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater 20:3248–3253

Xiu FX, Yang Z, Mandalapu LJ, Zhao DT, Liu JL, Beyermann WP (2005) High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett 87:1–3

Wang EJ, He T, Zhao LS, Chen YM, Cao YM, Cao YA (2011) Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J Mater Chem 21:144–150

Liu CC, Liu ZF, Li JW, Han JH, Wang Y, Liu ZC, Ya J (2013) Cu-doping ZnO/ZnS nanorods serve as the photoanode to enhance photocurrent and conversion efficiency. Microelectron Eng 103:12–16

Yang LL, Zhang ZQ, Yang JH, Yan YS, Sun YF, Cao J, Gao M, Wei MB, Lang JH, Liu ZF, Wang Z (2012) Effect of tube depth on the photovoltaic performance of CdS quantum dots sensitized ZnO nanotubes solar cells. J Alloy Compd 543:58–64

Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188

Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 2:154–168

Liu CC, Liu ZF, Li YB, Liu ZC, Wang Y, Ya J, Gargiulo N, Caputo D (2012) Enhanced visible-light-responsive photocatalytic property of CdS and PbS sensitized ZnO nanocomposite photocatalysts. Mater Sci Eng B 177:570–574

Li YX, Hu YF, Peng SQ, Lu GX, Li SB (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358

Gorai S, Ganguli D, Chaudhuri S (2004) Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater Chem Phys 88:383–387

Lai YK, Lin ZQ, Zheng DJ, Chi LF, Du RG, Lin CJ (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotubes array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181

Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19:5945–5951

Liu ZF, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 255:6415–6420

Zhang ZH, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512