Synthesis of Unsaturated Esters by Cross-Metathesis of Terpenes and Natural Rubber Using Ru-Alkylidene Catalysts

Current Organic Chemistry - Tập 23 Số 12 - Trang 1356-1364 - 2019
Araceli Martínez1, Mikhail A. Tlenkopatchev2, Selena Gutiérrez3, Manuel Burelo2, Joel Vargas4, Enrique Javier Jiménez‐Regalado5
1Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan, Mexico
2Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
4Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan, Mexico
5Centro de Investigacion en Quimica Aplicada (CIQA), Saltillo, Coahuila, Mexico

Tóm tắt

This study reports the cross-metathesis of bicyclic β-pinene, acyclic cis-3- methylpent-2-ene terpenes and the natural rubber with functionalized olefins, a route for the functionalization of the carbon-carbon double bond of natural products to obtain aliphatic unsaturated esters. The production of unsaturated esters from β-pinene and cis-3- methylpent-2-ene via cross-metathesis reaction with dimethyl maleate and diethyl maleate in the presence of the ruthenium-alkylidene [Ru(Cl)2(=CHPh)(1,3-bis(2,4,6- trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (I), [Ru(Cl)2(=CH(o-isopropoxyphenylmethylene))( 1,3-bis(2,4,6-trimethylphenyl) -2-imidazolidinylidene)] (II) and rutheniumvinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (III) was carried out. Results showed that the reaction of β-pinene with diethyl maleate using II catalyst produced unsaturated esters with 43 % selectivity. I and III catalysts showed low activity toward the cross-metathesis of β-pinene and dimethyl maleate. A survey about the cross-metathesis of acyclic cis-3-methylpent-2-ene with diethyl maleate by II catalyst was also studied. The formation of ethyl but-2-enoate and ethyl-3-methylpent-2-enoate products was highly selective by 63 %. The unsaturated esters formation from the cross-metathesis degradation of natural rubber (99.9 % cis-polyisoprene) with dimethyl maleate and diethyl maleate using I-III catalysts was accomplished as well. I and II catalysts showed high activity in the degradation of natural rubber with diethyl maleate to produce the low molecular weight of oligomers unsaturated ester products (Mn = 1 x 103 g mol-1) with isoprene units of m = 10 – 27 and yields ranging from 68 to 94 %.

Từ khóa


Tài liệu tham khảo

Roesle P.; Dürr C.J.; Möller H.M.; Cavallo L.; Caporaso L.; Mecking S.; Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate. J Am Chem Soc 2012,134(42),17696-17703

Goldbach V.; Roesle P.; Mecking S.; Catalytic isomerizing w-functionalization of fatty acids. ACS Catal 2015,5(10),5951-5972

Biermann U.; Bornscheuer U.; Meier M.A.R.; Metzger J.O.; Schäfer H.J.; Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed Engl 2011,50(17),3854-3871

El Houssame S.; El Firdoussi L.; Allaoud S.; Karim A.; Castanet Y.; Mortreux A.; Palladium-catalyzed alkoxycarbonylation of allylic natural terpenic functionalized olefins. J Mol Catal Chem 2001,168(1–2),15-23

Stempfle F.; Ortmann P.; Mecking S.; Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem Rev 2016,116(7),4597-4641

Cole-Hamilton D.J.; Nature’s polyethylene. Angew Chem Int Ed Engl 2010,49(46),8564-8566

Jiménez-Rodriguez C.; Eastham G.R.; Cole-Hamilton D.J.; Dicarboxylic acid esters from the carbonylation of unsaturated esters under mild conditions. Inorg Chem Commun 2005,8(10),878-881

Walther G.; Deutsch J.; Martin A.; Baumann F.E.; Fridag D.; Franke R.; Köckritz A.; α,ω-Functionalized C19 monomers. ChemSusChem 2011,4(8),1052-1054

Walther G.; Martin A.; Köckritz A.; Direct transesterification/isomerization/methoxycarbonylation of various plant oils. J Am Oil Chem Soc 2013,90(1),141-145

Ho T.T.T.; Jacobs T.; Meier M.A.R.; A design-of-experiments approach for the optimization and understanding of the cross-metathesis reaction of methyl ricinoleate with methyl acrylate. ChemSusChem 2009,2(8),749-754

Behr A.; Toepell S.; Comparison of reactivity in the cross metathesis of allyl acetate-derivatives with oleochemical compounds. J Am Oil Chem Soc 2015,92(4),603-611

Rybak A.; Meier M.A.R.; Cross-metathesis of oleyl alcohol with methyl acrylate: Optimization of reaction conditions and comparison of their environmental impact. Green Chem 2008,10(10),1099-1104

Rybak A.; Meier M.A.R.; Cross-Metathesis of fatty acid derivatives with methyl acrylate: Renewable raw materials for the chemical industry. Green Chem 2007,9(12),1356-1361

Warwel S.; Demes C.; Steinke G.; Polyesters by lipase-catalyzed polycondensation of unsaturated and epoxidized long-chain α,ω-dicarboxylic acid methyl esters with diols. J Polym Sci A Polym Chem 2001,39(10),1601-1609

Zhu Y.; Patel J.; Mujcinovic S.; Jackson W.R.; Robinson A.J.; Preparation of terminal oxygenates from renewable natural oils by a one-pot metathesis-isomerisation-methoxycarbonylation-transesterification reaction sequence. Green Chem 2006,8(8),746-749

Scheller U.; Zimmer T.; Becher D.; Schauer F.; Schunck W.H.; Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by Cytochrome P450 52A3. J Biol Chem 1998,273(49),32528-32534

Aldred E.M.; Buck C.; Vall K.; Aldred, E M, Ed; Churchill Livingstone Elsevier London2009,167-174

Breitmaier E.; Terpenes: Flavors, Fragances, Pharmaca,Pheromones Wiley-VCH GmbH 2006

Kalck P.; Urrutigoïty M.; Dechy-Cabaret O.; Catalytic Carbonylation Reactions 2006,Vol. 18,97-123

Lenoble G.; Urrutigoïty M.; Kalck P.; Dihydromyrcenol carbonylation catalyzed by palladium-tin precursors: Selectivity of the reaction drawn by the experimental conditions and the co-reactants. J Organomet Chem 2002,643-644,12-18

Chenal T.; Cipres I.; Jenck J.; Kalck P.; Peres Y.; Carbon monoxide as a building block in organic synthesis. Part II. One-step synthesis of esters by alkoxycarbonylation of naturally occurring allylbenzenes, propenylbenzenes and monoterpenes. J Mol Catal 1993,78(3),351-366

Gusevskaya E.V.; dos Santos E.N.; Augusti R.; Dias A.O.; Robles-Dutenhefner P.a.; Foca C.M.; Barros H.J.V.; Studies in Surface Science and Catalysis 2000,Vol. 130,563-568

Naigre R.; Chenal T.; Ciprés I.; Kalck P.; Daran J.C.; Vaissermann J.; Carbon monoxide as a building block in organic synthesis. Part V. Involvement of palladium-hydride species in carbonylation reactions of monoterpenes. X-Ray crystal structure of [Ph3PCH2CHCHPh]4[PdCl6][SnCl6]. J Organomet Chem 1994,480(1–2),91-102

Benedek C.; Prókai L.; Tõrös S.; Heil B.; Diastereoselective hydroalkoxycarbonylation of terpenes and vinyl-estrone. J Mol Catal Chem 2001,165(1–2),15-21

Behr A.; Johnen L.; Wintzer A.; Willstumpf A.; Dinges M.; First methoxycarbonylation of the renewable b-myrcene: High selectivity through reduced isomerisation. Catal Sci Technol 2013,3(6),1573-1578

Busch H.; Stempfle F.; Heß S.; Grau E.; Mecking S.; Selective isomerization-carbonylation of a terpene trisubstituted double bond. Green Chem 2014,16(10),4541-4545

Da Rocha L.L.; Dias A.; de, O.; Dos Santos, E.N.; Augusti, R.; Gusevskaya, E. Palladium/tin catalyzed alkoxycarbonylation of naturally occurring bicyclic monoterpenes. J Mol Catal Chem 1998,132(2–3),213-221

Gusevskaya E.V.; Organometallic catalysis: Some contributions to organic synthesis. Quim Nova 2003,26(2),242-248

Gusevskaya E.; Gonsalves J.A.; Palladium(II) catalyzed oxidation of naturally occurring terpenes with dioxygen. J Mol Catal Chem 1997,121(2-3),131-137

Dragojlovic V.; Gao D.; Bin; Chow, Y.L. Multigram scale cobalt catalyzed photochemical methoxycarbonylation of alkenes. J Mol Catal Chem 2001,171(1-2),43-51

Bruneau C.; Fischmeister C.; Alkene metathesis for transformation of renewables. Top Organomet Chem 2019,63,77-102

Behr A.; Johnen L.; Wintzer A.; Gümüş Çetin A.; Neubert P.; Domke L.; Ruthenium-catalyzed cross metathesis of β-myrcene and its derivatives with methyl acrylate. ChemCatChem 2016,8(3),515-522

Bruneau C.; Fischmeister C.; Mandelli D.; Carvalho W.A.; Dos Santos E.N.; Dixneuf P.H.; Fernandes L.S.; Transformations of terpenes and terpenoids via carbon-carbon double bond metathesis. Catal Sci Technol 2018,8(16),3989-4004

Dixneuf P.H.; Bruneau C.; Fischmeister C.; Alkene metathesis catalysis: A key for transformations of unsaturated plant oils and renewable derivatives. Oil Gas Sci Technol 2016,71(2),1-21

Tanabe Y.; Makita A.; Funakoshi S.; Hamasaki R.; Kawakusu T.; Practical synthesis of (Z)-civetone utilizing Ti-dieckmann. Adv Synth Catal 2002,344(5),507-510

Wang Z.J.; Jackson W.R.; Robinson A.J.; An efficient protocol for the cross-metathesis of sterically demanding olefins. Org Lett 2013,15(12),3006-3009

Bilel H.; Hamdi N.; Zagrouba F.; Fischmeister C.; Bruneau C.; Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chem 2011,13(6),1448-1452

Borré E.; Dinh T.; Caijo F.; Crévisy C.; Mauduit M.; Terpenic compounds as renewable sources of raw materials for cross-metathesis. Synthesis 2011,13,2125-2130

Marmo J.C.; Wagener K.B.; Acyclic Diene Metathesis (ADMET) depolymerization. Synthesis of mass-exact telechelic polybutadiene oligomers. Macromolecules 1993,26(8),2137-2138

Marmo J.C.; Wagener K.B.; ADMET Depolymerization. Synthesis of perfectly difunctional f=2.0) telechelic polybutadiene oligomers. Macromolecules 1995,28(8),2602-2606

Schulz M.D.; Ford R.R.; Wagener K.B.; Insertion metathesis depolymerization. Polym Chem 2013,4(13),3656-3658

Reyes-Gómez S.; Montiel R.; Tlenkopatchev M.A.; J Mex Chem Soc 2018,61(1),1-15

Fomine S.; Tlenkopatchev M.A.; Cross-metathesis of dimethyl maleate and ethylene catalyzed by second generation ruthenium carbene complexes: B3LYP and MPW1K comparison study. J Organomet Chem 2006,691(24–25),5189-5196

Gutiérrez S.; Tlenkopatchev M.A.; Metathesis of renewable products: Degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts. Polym Bull 2011,66(8),1029-1038

Acevedo A.; Fomine S.; Gutiérrez S.; Tlenkopatchev M.A.; Metathesis of terpenes using the second generation Grubbs Ru-alkylidene catalysts: Computational modeling. J Organomet Chem 2014,765,17-22

Martínez A.; Gutiérrez S.; Tlenkopatchev M.A.; Metathesis transformations of natural products: Cross-metathesis of natural rubber and mandarin oil by Ru-alkylidene catalysts. Molecules 2012,17(5),6001-6010

Fomine S.; Tlenkopatchev M.A.; Computational modeling of renewable molecules. Ruthenium alkylidene-mediated metathesis of trialkyl-substituted olefins. Organometallics 2010,29(7),1580-1587

Sadaka F.; Campistron I.; Laguerre A.; Pilard J.F.; Telechelic oligomers obtained by metathetic degradation of both polyisoprene and styrene-butadiene rubbers. Applications for recycling waste tyre rubber. Polym Degrad Stabil 2013,98(3),736-742

Tlenkopatchev M.A.; Barcenas A.; Fomine S.; Computational study of metathesis degradation of rubber, 2a distribution of cyclic oligomers via intermolecular metathesis degradation of natural rubber. Macromol Theory Simul 2001,10(7),441-446

Martínez A.; Clark-Tapia R.; Gutierrez S.; Tlenkopatchev M.; Synthesis and characterization of new ruthenium vinylidene complexes. Lett Org Chem 2014,11(10),748-754