Synthesis of TiO2 Thin Films: Relationship Between Preparation Conditions and Nanostructure

Topics in Catalysis - Tập 50 - Trang 133-144 - 2008
C. Ampelli1, Rosalba Passalacqua1, Siglinda Perathoner1, Gabriele Centi1, Dangsheng S. Su2, Gisela Weinberg2
1Department of Industrial Chemistry and Engineering of Materials and ELCASS, University of Messina and INSTM UdR Messina, Messina, Italy
2Department of Inorganic Chemistry and ELCASS, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

Tóm tắt

The influence of the synthesis conditions (pH, HF concentration, procedure of application of the voltage) during the anodization of Ti foils to produce TiO2 thin films characterized by an ordered arrays of 1D nanostructures (nanorods, nanotubes) is discussed. Different types of 1D nanostructures could be obtained by changing the procedure of synthesis, as shown by field emission scanning electron microscopy images. The analysis of the current versus time curves during the procedure of synthesis provides indications on the sequence of processes occurring during the synthesis. It is also suggested that different growing mechanisms occur depending on the preparation, leading in turn to the different type of nanostructures observed. The relevance of this preparation method is related to the analysis of the relationship for oxide materials between nano-architecture and reactivity and gives the opportunity to prepare materials with an intermediate degree of complexity between model and applied catalysts.

Tài liệu tham khảo

Centi G, Cavani F, Trifirò F (2001) In: Twigg MV, Spencer MS (eds) Selective oxidation by heterogeneous catalysis. Recent developments. Fundamental and applied catalysis. Kluwer/Plenum Publishing Corporation, New York Centi G, Perathoner S (1999) Curr Opin in Solid State Mater Sci 4:74 Centi G, Perathoner S (2003) Catal Today 79–80C:3 Bavykin DV, Friedrich JM, Walsh FC (2006) Advanced materials, vol 18. Wiley-VCH, Weinheim, p 2807 Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Solar Energy Mater Solar Cells 90:2011 Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277 Somorjai GA, ACS Symposium series (2005), 890 (Nanotechnology and the Environment), 210. Am Chem Soc Wong K, Johansson S, Kasemo B (1996) Faraday Discuss 105:237 Caruso RA (2003) Top Curr Chem 226:91 Centi G, Perathoner S (2007) Nano-architecture and reactivity of titania catalytic materials. Quasi-1D nanostructures. In: Spivey JJ (ed) Catalysis, vol 19. Royal Society of Chemistry Publishers, Cambridge, p 367 Centi G, Passalacqua R, Perathoner S, Su DS, Weinberg G, Schlögl R (2007) Phys Chem Chem Phys 9:4930 Cozzoli PD, Kornowski A, Weller H (2003) JACS 125:14539 Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) JACS 126:3868 Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) J Mater Res 18:2588 Varghese KO, Grimes CA (2003) J Nanosci Nanotechnol 3:277 Varghese OK, Gong D, Paulose M, Keat KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624 Wahl A, Augustynski J (1998) J Phys Chem B 102:7820 Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Chem Lett 8:942 Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Electrochemistry 70:418 Macak JM, Tsuchiya H, Schuki P (2005) Angew Chem 44:2100 Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Nano Lett 7:1286 Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Small 3:300 Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P (2006) Angew Chem Int Ed 45:6993 Zhao J, Wang X, Sun T, Li L (2005) Nanotechnology 16:2450 Macak JM, Albu SP, Schmuki P (2007) Phys Status Solidi RRL 1:181 Perathoner S, Passalacqua R, Centi G, Su DS, Weinberg G (2007) Stud Surf Sci Catal, (TOCAT5, Science and Technology in Catalysis 2006, Kodansha/Elsevier) 172:437 Perathoner S, Passalacqua R, Centi G, Su DS, Weinberg G (2007) Catal Today 122(1–2):3 Patermarakis G (1998) J Elec Anal Chem 447:25 Diggle JW, Downie TC, Goulding CW (1969) Chem Rev 69:365 Varghese OK, Gong DW, Paulose M, Grimes CA, Dickey EC (2003) J Mater Res 18:156 Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331 Zhao J, Wang X, Sun T, Li L (2005) Nanotechnology 16:2450 Yae S, Kawamoto Y, Tanaka H, Fukumuro N, Matsuda H (2003) Electrochem Comm 5:632 Ogawa H, Ishikawa K, Suzuki MT, Hayami Y, Fujimura S (1995) Jpn J Appl Phys 34 (Part 1):732 Grimes CA (2007) J Mater Chem 17:1451 Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807 Chen X, Mao SS (2006) J Nanosci Nanotechnol 6:906 Goodman DW (1995) Chem Rev 95:523 Onishi H, Iwasawa Y (1997) In: Roberts MW (ed) Interfacial science. Blackwell, Oxford, p 57 Guczi L, Paszti Z, Frey K, Beck A, Peto G, Daroczy CS (2006) Top Catal 39:137 Wu X, Bai H, Zhang J, Chen F, Shi G (2005) J Phys Chem B 109:22836 Hahn R, Macak JM, Schmuki P (2007) Electrochem Comm 9:947 Masuda H (2005) Highly ordered nanohole arrays in anodic porous alumina. In: Wehrspohn RB (eds) Ordered porous nanostructures and applications. Springer, New York, p.37 Cheng L, Zhang X, Liu B, Wang H, Li Y, Huang Y, Du Z (2005) Nanotechnology 16:1341