Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3

Materials Science for Energy Technologies - Tập 7 - Trang 166-179 - 2024
Adán de Jesús Bautista-Morantes1, Carlos Ordulio Calderón-Carvajal1, Jairo Alberto Gómez-Cuaspud1, Enrique Vera-López1
1Grupo de Integridad y Evaluación de Materiales (GIEM), Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Av. Central del Norte 39-115, 150003 Tunja, Colombia

Tài liệu tham khảo

Singh Brar, 2017, Conversion of Solar Energy into Electrical Energy Using Photovoltaic Technology: A Review, Int. Arch. App. Sci. Technol., 8, 14 G. Liu, L. Kong, W. Yang, H. kwang Mao, Pressure engineering of photovoltaic perovskites, Materials Today, 27. Elsevier B.V., pp. 91–106, Jul. 01, 2019. doi: doi: 10.1016/j.mattod.2019.02.016. Gao, 2019, Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−Δ perovskite membranes, Sep. Purif. Technol., 210, 900, 10.1016/j.seppur.2018.09.001 Cui, 2018, Double perovskite Bi2FeMoxNi1-xO6 thin films: Novel ferroelectric photovoltaic materials with narrow bandgap and enhanced photovoltaic performance, Sol. Energy Mater. Sol. Cells, 187, 9, 10.1016/j.solmat.2018.07.013 Efaz, 2021, A review of primary technologies of thin-film solar cells, Eng. Res. Exp., 3, Sep Al-Ezzi, 2022, Photovoltaic Solar Cells: A Review, Appl. Syst. Innov., 5, 67, 10.3390/asi5040067 Bretos, 2018, “Synthesis by Low Temperature Solution Processing of Ferroelectric Perovskite Oxide Thin Films as Candidate Materials for Photovoltaic Applications”, in The Future of Semiconductor Oxides in Next-Generation Solar Cells, Elsevier, 45 Pérez-Tomás, 2018, “Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells”, in The Future of Semiconductor Oxides in Next-Generation Solar Cells, Elsevier, 267 K. T. Butler, J. M. Frost, and A. Walsh, “Ferroelectric materials for solar energy conversion: Photoferroics revisited,” Energy and Environmental Science, vol. 8, no. 3. Royal Society of Chemistry, pp. 838–848, Mar. 01, 2015. doi: doi: 10.1039/c4ee03523b. J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, and H. L. Yip, “Inorganic Halide Perovskite Solar Cells: Progress and Challenges,” Adv Energy Mater, vol. 10, no. 23, Jun. 2020, doi: doi: 10.1002/AENM.202000183. A. M. Glazer, “Perovskites modern and ancient. By Roger H. Mitchell. Thunder Bay, Ontario: Almaz Press, 2002. Price USD 70.00. ISBN 0-9689411-0-9,” Acta Crystallogr B, vol. 58, no. 6, pp. 1075–1075, Dec. 2002, doi: doi: 10.1107/S0108768102020220. Čebela, 2017, BiFeO3 perovskites: A multidisciplinary approach to multiferroics, Ceram. Int., 43, 1256, 10.1016/j.ceramint.2016.10.074 Ghadage, 2023, Pd loaded bismuth ferrite: A versatile perovskite for dual applications as acetone gas sensor and photocatalytic dye degradation of malachite green, Ceram. Int., 49, 5738, 10.1016/j.ceramint.2022.10.153 Tuluk, 2021, Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites, J. Alloy. Compd., 868, 10.1016/j.jallcom.2021.159186 L. Zhao et al., “Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates,” Scientific Reports 2015 5:1, vol. 5, no. 1, pp. 1–6, Apr. 2015, doi: doi: 10.1038/srep09680. Wang, 2009, Multiferroicity: the coupling between magnetic and polarization orders, Adv. Phys., 58, 321, 10.1080/00018730902920554 Zhu, 2019, Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics, Ceram. Int., 45, 20266, 10.1016/j.ceramint.2019.06.300 Montecillo, 2023, Optimized electric-energy storage in BiFeO3–BaTiO3 ceramics via tailoring microstructure and nanocluster, J. Eur. Ceram. Soc., 43, 1941, 10.1016/j.jeurceramsoc.2022.12.064 B. Deka, K. H. Cho, S. Tingry, and Z. Tang, “BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects,” Materials 2021, Vol. 14, Page 7188, vol. 14, no. 23, p. 7188, Nov. 2021, doi: doi: 10.3390/MA14237188. Zhao, 2023, Ultra-low power consumption and favorable reliability Mn-doped BiFeO3 resistance-switching devices via tunable oxygen vacancy, Ceram. Int., 49, 9090, 10.1016/j.ceramint.2022.11.066 Li, 2021, Sub-Picosecond Nanodiodes for Low-Power Ultrafast Electronics, Adv. Mater., 33, 2100874, 10.1002/adma.202100874 A. Wold, “Nonmetallic Crystals: The Major Ternary Structural Families. O. Muller and R. Roy. Springer-Verlag, New York, 1974. x, 488 pp., illus. Crystal Chemistry of Non-Metallic Materials, vol. 4.,” Science (1979), vol. 188, no. 4184, pp. 143–143, Apr. 1975, doi: doi: 10.1126/science.188.4184.143.a. F. Pedro-García, F. Sánchez-De Jesús, A. M. Bolarín-Miró, C. A. Cortés-Escobedo, and A. Barba-Pingarrón, “Propiedades magnéticas de BiFeO3 obtenido por mecanosíntesis,” Tópicos de Investigación en Ciencias de la Tierra y Materiales, vol. 3, pp. 176–183, Sep. 2016, doi: doi: 10.29057/aactm.v3i3.9628. F. Pedro-García, A. M. Bolarín-Miró, F. Sánchez-De Jesús, C. A. Cortés-Escobedo, Z. Valdez-Nava, and G. Torres-Villaseñor, “Stabilization of α-BiFeO3 structure by Sr2+ and its effect on multiferroic properties,” Ceram Int, vol. 44, no. 7, pp. 8087–8093, May 2018, doi: doi: 10.1016/J.CERAMINT.2018.01.251. G. Dhir, P. Uniyal, and N. K. Verma, “Tactics of particle size for enhanced multiferroic properties in nanoscale Ca-doped BiFeO3,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 14, no. 5, May 2017, doi: doi: 10.1002/PSSC.201600253. Wang, 2016, Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation, Sci. Rep., 6 Szafraniak, 2007, Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis, J. Eur. Ceram. Soc., 27, 4399, 10.1016/j.jeurceramsoc.2007.02.163 Wu, 2018, Ferroelectric photovoltaic properties of perovskite Na0.5Bi0.5FeO3 based solution-processed solar cells, J. Alloy. Compd., 750, 959, 10.1016/j.jallcom.2018.04.076 Uniyal, 2008, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/1/012205 Wang, 2019, Effect of Nd/Mn substitution on the structure and magnetic properties of nano-BiFeO3, J. Alloy. Compd., 786, 385, 10.1016/j.jallcom.2019.01.369 Song, 2023, Flux-assisted synthesis of tungsten-doped layered perovskite oxychloride with promoted visible-light-responsive O2 evolution performance, Chem. Commun., 10.1039/D2CC05806E Sando, 2014, BiFeO3 epitaxial thin films and devices: past, present and future, J. Phys. Condens. Matter, 26, 10.1088/0953-8984/26/47/473201 D. Carranza-Celis et al., “Control of Multiferroic properties in BiFeO3 nanoparticles,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–9, Feb. 2019, doi: doi: 10.1038/s41598-019-39517-3. Sando, 2018, Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films, Adv. Opt. Mater., 6, 1700836, 10.1002/adom.201700836 P. Lopez-Varo et al., “Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion,” Physics Reports, vol. 653. Elsevier B.V., pp. 1–40, Oct. 07, 2016. doi: doi: 10.1016/j.physrep.2016.07.006. Amirov, 2009, Specific features of the thermal, magnetic, and dielectric properties of multiferroics BiFeO3 and Bi0.95La0.05FeO3, Phys. Solid State, 51, 1189, 10.1134/S1063783409060183 Kundys, 2012, Wavelength dependence of photoinduced deformation in BiFeO3, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 10.1103/PhysRevB.85.092301 Serovaiskii, 2022, Synthesis of Perovskite-Type BiScO3 Ceramics and their Dielectric and Infrared Characterization, J. Phys. Chem. Lett., 13, 10114, 10.1021/acs.jpclett.2c02898 Zhang, 2014, Novel behaviors of multiferroic properties in Na-Doped BiFeO3 nanoparticles, Nanoscale, 6, 10831, 10.1039/C4NR02557A Yang, 2009, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films, Nat. Mater., 8, 485, 10.1038/nmat2432 Jalaja, 2017, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull., 88, 9, 10.1016/j.materresbull.2016.12.008 Zhang, 2017, Investigation on a new multiferroic compound KBiFe2O5: Structural, optical, electrical and magnetic properties, J. Alloy. Compd., 699, 561, 10.1016/j.jallcom.2017.01.041 Taylor, 2019, A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts, Chem. Rev., 119, 9427, 10.1021/acs.chemrev.9b00155 N. A. Sahara and B. Kurniawan, “The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method,” IOP Conf Ser Mater Sci Eng, vol. 496, no. 1, p. 012004, Mar. 2019, doi: doi: 10.1088/1757-899X/496/1/012004. Majid, 2015, Sol-Gel Synthesis of BiFeO3 Nanoparticles, Mater. Today:. Proc., 2, 5293 R. Y. Zheng, J. Wang, and S. Ramakrishna, “Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure,” J Appl Phys, vol. 104, no. 3, 2008, doi: doi: 10.1063/1.2966696. Cheng, 2008, Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping, Phys. Rev. B: Condens. Matter Mater. Phys., 77, 10.1103/PhysRevB.77.092101 Catalan, 2009, Physics and Applications of Bismuth Ferrite, Adv. Mater., 21, 2463, 10.1002/adma.200802849 Ferri, 2008, Chemical characterization of BiFeO3 obtained by Pechini method, J. Braz. Chem. Soc., 19, 1153, 10.1590/S0103-50532008000600015 Rane, 2018, “Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites”, in Synthesis of Inorganic Nanomaterials, 121 Walton, 2020, “Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions”, Chemistry – A, Eur. J., 26, 9041, 10.1002/chem.202000707 Dutta, 2010, Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods, Nanoscale, 2, 1149, 10.1039/c0nr00100g Das, 2007, Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques, Mater. Lett., 61, 2100, 10.1016/j.matlet.2006.08.026 Moure, 2011, Processing and characterization of Sr doped BiFeO3 multiferroic materials by high energetic milling, J. Alloy. Compd., 509, 7042, 10.1016/j.jallcom.2011.03.132 Cristóbal, 2013, Mechanochemically assisted synthesis of nanocrystalline BiFeO3, Mater. Chem. Phys., 139, 931, 10.1016/j.matchemphys.2013.02.058 Park, 2007, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett., 7, 766, 10.1021/nl063039w Sun, 2021, Emergent strain engineering of multiferroic BiFeO3 thin films, J. Materiomics, 7, 281, 10.1016/j.jmat.2020.08.005 J. S. Wang et al., “Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–9, Dec. 2016, doi: doi: 10.1038/srep38268. Yang, 2015, Strain effects on multiferroic BiFeO3 films, C. R. Phys., 16, 193, 10.1016/j.crhy.2015.01.010 Zhang, 2017, Structural, electrical and magnetic properties of YFe0.9Mn0.1O3 ceramics, Ceram. Int., 43, 17216, 10.1016/j.ceramint.2017.09.021 Zhang, 2009, Phase evolution and magnetic property of Bi1−xDyxFeO3 ceramics, Mater. Lett., 63, 1820, 10.1016/j.matlet.2009.05.056 Amiri, 2016, “Synthesis and Characterization of BiFeO3 Ceramic by Simple and, Novel Methods”, 35, 551 T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite; Powder diffraction; Volume 29.” pp. S13–S18, Dec. 2014, doi: doi: 10.1017/S0885715614000840. R. T. Downs and M. Hall-Wallace, “The American Mineralogist Crystal Structure Database,” American Mineralogist, vol. 88, pp. 247–250, 2003, link The American Mineralogist crystal structure database | American Mineralogist | GeoScienceWorld, Last access: 13/05/2023. Gražulis, 2015, Computing stoichiometric molecular composition from crystal structures, J. Appl. Cryst., 48, 85, 10.1107/S1600576714025904 J. R. Deschamps and J. L. Flippen-Anderson, “Crystallography,” R. A. B. T. E. of P. S. and T. (Third E. Meyers, Ed. New York: Academic Press, 2002, pp. 121–153. doi: 10.1016/B0- 12-227410-5/00160-5. Evans, 2021, Structure Analysis from Powder Diffraction Data: Rietveld Refinement in Excel, J. Chem. Educ., 98, 495, 10.1021/acs.jchemed.0c01016 J. Rodriguez-Carvajal, “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in satellite meeting on powder diffraction of the XV congress of the IUCr, 1990, vol. 127, link: (PDF) Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data (researchgate.net), Last access: 13/05/2023. P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” urn:issn:0021-8898, vol. 20, no. 2, pp. 79–83, Apr. 1987, doi: doi: 10.1107/S0021889887087090. Almosni, 2018, Material challenges for solar cells in the twenty-first century: directions in emerging technologies, Sci. Technol. Adv. Mater., 19, 336, 10.1080/14686996.2018.1433439 Sosnowska, 2013, Crystal and Magnetic Structure in Co-Substituted BiFeO3, Inorg. Chem., 52, 13269, 10.1021/ic402427q Finger, 1980, Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars, J. Appl. Phys., 51, 5362, 10.1063/1.327451 Radaev, 1991, Atomic structure and crystal chemistry of sillenites: Bi12(Bi0.503+ Fe0.503+)O19.50 and Bi12(Bi0.673+ Zn0.332+)O19.33, Acta Crystallogr. B, 47, 1, 10.1107/S0108768190007492 Niizeki, 1968, The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9, Z Kristallogr Cryst Mater, 127, 173 Ali, 2022, Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3, J. Electroceram., 48, 95, 10.1007/s10832-021-00276-1 Parwin, 2021, Time-temperature-transformation of BiFeO3 phase synthesized by citrate–nitrate route and a synergetic effect for its stabilization, J. Chem. Thermodyn., 156, 10.1016/j.jct.2020.106347 Rojac, 2010, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. Appl. Phys., 108, 10.1063/1.3490249 L. P. Kozeeva, M. Yu. Kameneva, N. v Podberezskaya, A. I. Smolentsev, and V. E. Fedorov, “Preparation and structural characterization of bismuth ferrite crystals of different morphological types,” Inorganic Materials, vol. 47, no. 1, pp. 68–74, 2011, doi: doi: 10.1134/S0020168510121015. Parra-Huertas, 2023, Synthesis and characterization of Faujasite-Na from fly ash by the fusion-hydrothermal method, Boletín De La Sociedad Española De Cerámica y Vidrio, 10.1016/j.bsecv.2023.01.004 Li, 2013, Multiferroic properties of La and Mn co-doped BiFeO3 nanofibers by sol–gel and electrospinning technique, Mater. Lett., 90, 45, 10.1016/j.matlet.2012.09.012 Singh, 2013, Synthesis and optical properties of Y3+ doped BiFeO3 multiferroics, 1027, 10.1063/1.4810583 Nair, 2020, Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite BiFeO3, Appl. Phys. A, 126, 836, 10.1007/s00339-020-04027-x Zhou, 2013, Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature, Physica B Condens Matter, 410, 13, 10.1016/j.physb.2012.11.003 Perdomo, 2020, Low temperature synthesis of high purity nanoscaled BiFeO3 by a fast polymer solution method and their ferromagnetic behavior, J. Alloy. Compd., 849, 10.1016/j.jallcom.2020.156564 Li, 2015, High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency, RSC Adv., 5, 77184, 10.1039/C5RA15458H X. Wang et al., “Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles,” Journal of Nanoparticle Research, vol. 17, no. 5, p. 209, 2015, doi: 10.1007/s11051-015-3018-1, doi: doi: 10.1007/s11051-015-3018-1. Qureshi, 2021, Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells, Surf. Interfaces, 25 S. Frangini, L. della Seta, and C. Paoletti, “Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications,” Energies (Basel), vol. 15, no. 2, Jan. 2022, doi: doi: 10.3390/en15020632. Souri, 2021, Metal titanate (ATiO3, a: Ni Co, Mg, Zn) nanorods for toluene photooxidation under led illumination, Appl. Sci. (Switzerland), 11, Nov O. Y. Kurapova, A. G. Glukharev, O. v. Glumov, M. Y. Kurapov, E. v. Boltynjuk, and V. G. Konakov, “Structure and electrical properties of YSZ-RGO composites and YSZ ceramics, obtained from composite powder,” Electrochim Acta, vol. 320, Oct. 2019, doi: doi: 10.1016/j.electacta.2019.134573. Farhadi, 2019, Improving the adsorption ability of perovskite-type LaNiO3 nanomaterial towards organic dyes by hybridizing with phosphotungstic acid, Polyhedron, 169, 39, 10.1016/j.poly.2019.05.008 Kadari, 2019, Effect of ion (Ag+, N3−) doping on the photocatalytic activity of the Ruddlesden–Popper-type layered perovskite K2Nd2Ti3O10, C. R. Chim., 22, 667, 10.1016/j.crci.2019.10.004 B. Kurniawan et al., “Effect of Temperature and Time of Sintering to Doping Ag on Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2018. doi: doi: 10.1088/1742-6596/1011/1/012014. Kalybekov, 2020, “Substantiation of averaging the content of mined ores with account of their readiness for mining”, in E3S Web of Conferences, EDP Sciences Koch, 2021, The Influence of the Chemical Potential on Defects and Function of Perovskites in Catalysis, Front. Chem., 9, 10.3389/fchem.2021.746229 Gao, 2007, Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles, Adv. Mater., 19, 2889, 10.1002/adma.200602377 M. Mahesh Kumar, V. R. Palkar, K. Srinivas, and S. v. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic,” Appl Phys Lett, vol. 76, no. 19, pp. 2764–2766, May 2000, doi: doi: 10.1063/1.126468. Kursun, 2018, Structural, electrical and magnetic properties of Nd – A – CoO3 (A = Sr, Ca) Perovskite Powders by Mechanical Alloying, Sci. Rep., 8, Dec, 10.1038/s41598-018-31458-7 Schneider, 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671, 10.1038/nmeth.2089 Duan, 2019, Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity, Mater. Res. Bull., 112, 104, 10.1016/j.materresbull.2018.12.012 Galal, 2019, Synthesis, structural and morphological characterizations of nano-Ru-based perovskites/RGO composites, Sci. Rep., 9, 10.1038/s41598-019-43726-1 Irshad, 2020, Evaluation of BaZr0.8X0.2 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method, J. Alloy. Compd., 815, 10.1016/j.jallcom.2019.152389 Bedon, 2018, Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalisation of La0.6Sr0.4Ga0.3Fe0.7O3 with Oxides. PART 1: Cathodes by Means of Iron Oxide, ACS Appl. Energy Mater., 6840, 10.1021/acsaem.8b01124 Xu, 2018, Effect of Temperature and Time of Sintering to Doping Ag On Microstructure of Perovskite Material (La1-xAgx)0.8Ca0.2MnO3, J. Phys. Conf. Ser., 1011 Abdelkader, 2022, Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation, Ceramica, 68, 84, 10.1590/0366-69132022683853181 Sahara, 2019, The effect of partial substitution of monovalent ion on divalent ion of La0.8Ca0.2-xAgxMnO3 (x=0 and x=0.05) compounds in structure, morphology, and purity by sol-gel method Singh, 2006, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry, Appl. Phys. Lett., 88, 10.1063/1.2168038 H. J. Fecht, “Nanostructured Materials: Synthesis by Mechanical Means,” Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, pp. 3280–3289, Mar. 2014, doi: doi: 10.1081/E-ENN3-120009256. Haumont, 2006, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 10.1103/PhysRevB.73.132101 Zhong, 2023, Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with Ultraviolet-Visible Spectroscopy: A Case Study for Cubic Boron Arsenide, J. Phys. Chem. Lett., 14, 6702, 10.1021/acs.jpclett.3c01416 Zhang, 2020, Enhanced photocatalytic activity of Ba doped BiFeO3 by turning morphologies and band gap, J. Mater. Sci. Mater. Electron., 31, 15007, 10.1007/s10854-020-04064-5 Li, 2019, Structural and optical properties of Ce doped BiFeO3 nanoparticles via sol–gel method, Micro Nano Lett, 14, 1307, 10.1049/mnl.2019.0236 Hao, 2014, Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer, Mater. Res. Bull., 50, 369, 10.1016/j.materresbull.2013.11.039 Han, 2006, Tunable Synthesis of Bismuth Ferrites with Various Morphologies, Adv. Mater., 18, 2145, 10.1002/adma.200600072 Zhang, 2016, Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 8, 9684, 10.1021/acsami.6b00429 Dong, 2015, Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite, RSC Adv., 5, 29618, 10.1039/C5RA01869B Yuan, 2018, Tunability of magnetization and bandgap in mullite-type Bi2Fe4O9 ceramics through non-magnetic ions, Scr. Mater., 146, 55, 10.1016/j.scriptamat.2017.11.016 Wang, 2019, Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting, J Mater Chem A Mater, 7, 9537, 10.1039/C8TA09583C Kirsch, 2016, Nanoparticle Precursor into Polycrystalline Bi2Fe4O9: An Evolutionary Investigation of Structural, Morphological, Optical, and Vibrational Properties, J. Phys. Chem. C, 120, 18831, 10.1021/acs.jpcc.6b04773 Zhu, 2017, Preparation and microwave absorption properties of BiFeO3 and BiFeO3/PANI composites, J. Mater. Sci. Mater. Electron., 28, 13350, 10.1007/s10854-017-7172-3 M. Kumar, S. Shankar, Brijmohan, S. Kumar, O. P. Thakur, and A. K. Ghosh, “Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions,” Phys Lett A, vol. 381, no. 4, pp. 379–386, 2017, doi: doi: 10.1016/j.physleta.2016.11.009. Gebhardt, 2018, Doping of BiFeO3: A comprehensive study on substitutional doping, Phys. Rev. B, 98, 10.1103/PhysRevB.98.125202