Synthesis of LiFePO4 nanoplatelets as cathode materials for Li-ion batteries

Pleiades Publishing Ltd - Tập 11 - Trang 757-760 - 2017
R. R. Kapaev1, S. A. Novikova1, T. L. Kulova2, A. M. Skundin2, A. B. Yaroslavtsev1
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Lithium iron phosphate with plateletlike morphology (length of 200 nm and thickness of 15–25 nm) was obtained using the solvothermal method. The resulting particles have the smallest dimension along the 1D channels, which are paths of Li+ ion migration. The discharge capacity of composite based on synthesized LiFePO4 and carbon was equal to 160 mAh/g at a current density of 20 mA/g and 80 mAh/g at a current density of 800 mA/g.

Tài liệu tham khảo

L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough, Energy Environ. Sci. 4, 269 (2011). S. Franger, F. le Cras, C. Bourbon, and H. Rouault, J. Power Sources 119, 252 (2003). I. B. Weinstock, J. Power Sources 110, 471 (2002). Z. Li, D. Zhang, and F. Yang, J. Mater. Sci. 44, 2435 (2009). M. S. Whittingham, Chem. Rev. 104, 4271 (2004). C. Delmas, M. Maccario, L. Croguennec, F. le Cras, and F. Weill, Nat. Mater. 7, 665 (2008). A. Yamada, H. Koizumi, S.-i. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, and Y. Kobayashi, Nat. Mater. 5, 357 (2006). D. Safronov, S. Novikova, A. Skundin, and A. Yaroslavtsev, Inorg. Mater. 48, 57 (2012). C. Benoit and S. Franger, J. Solid State Electrochem. 12, 987 (2008). Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, Angew. Chem., Int. Ed. Engl. 47, 7461 (2008). M. Wagemaker, D. P. Singh, W. J. Borghols, U. Lafont, L. Haverkate, V. K. Peterson, and F. M. Mulder, J. Am. Chem. Soc. 133, 10222 (2011). C. Sun, S. Rajasekhara, J. B. Goodenough, and F. Zhou, J. Am. Chem. Soc. 133, 2132 (2011). C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, Electrochem. Solid State Lett. 9, A352 (2006). V. S. Pervov, E. V. Makhonina, A. E. Zotova, N. V. Kireeva, and I.-M. A. Kedrinskii, Nanotechnol. Russ. 9, 347 (2014). A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012). M. S. Islam and C. A. Fisher, Chem. Soc. Rev. 43, 185 (2014). M. S. Islam, D. J. Driscoll, C. A. Fisher, and P. R. Slater, Chem. Mater. 17, 5085 (2005). D. Morgan, A. Van der Ven, and G. Ceder, Electrochem. Solid State Lett. 7, A30 (2004). C. A. Fisher and M. S. Islam, J. Mater. Chem. 18, 1209 (2008). T. Nakamura, Y. Miwa, M. Tabuchi, and Y. Yamada, J. Electrochem. Soc. 153, A1108 (2006). H. Gao, L. Jiao, J. Yang, Z. Qi, Y. Wang, and H. Yuan, Electrochim. Acta 97, 143 (2013). R. Kapaev, S. Novikova, T. Kulova, A. Skundin, and A. Yaroslavtsev, J. Solid State Electrochem. 19, 2793 (2015). K. Park, J. Son, H. Chung, S. Kim, C. Lee, and H. Kim, Electrochem. Commun. 5, 839 (2003). O. A. Drozhzhin, V. D. Sumanov, O. M. Karakulina, A. M. Abakumov, J. Hadermann, A. N. Baranov, K. J. Stevenson, and E. V. Antipov, Electrochim. Acta 191, 149 (2016). M. K. Devaraju and I. Honma, Adv. Energy Mater. 2, 284 (2012). Y. Zhao, L. Peng, B. Liu, and G. Yu, Nano Lett. 14, 2849 (2014). M. Zhang, R. Liu, F. Feng, S. Liu, and Q. Shen, J. Phys. Chem. C 119, 12149 (2015). C. Nan, J. Lu, C. Chen, Q. Peng, and Y. Li, J. Mater. Chem. 21, 9994 (2011). L. Wang, X. He, W. Sun, J. Wang, Y. Li, and S. Fan, Nano Lett. 12, 5632 (2012). S. Ju, H. Peng, G. Li, and K. Chen, Mater. Lett. 74, 22 (2012). X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, and Y. Zhou, J. Phys. Chem. C 114, 16806 (2010). W. Kang, C. Zhao, R. Liu, F. Xu, and Q. Shen, Cryst. Eng. Comm. 14, 2245 (2012). K. Dokko, S. Koizumi, H. Nakano, and K. Kanamura, J. Mater. Chem. 17, 4803 (2007). S. Novikova, S. Yaroslavtsev, V. Rusakov, A. Chekannikov, T. Kulova, A. Skundin, and A. Yaroslavtsev, J. Power Sources 300, 444 (2015).