Synthesis of LiFePO4 nanoplatelets as cathode materials for Li-ion batteries
Tóm tắt
Lithium iron phosphate with plateletlike morphology (length of 200 nm and thickness of 15–25 nm) was obtained using the solvothermal method. The resulting particles have the smallest dimension along the 1D channels, which are paths of Li+ ion migration. The discharge capacity of composite based on synthesized LiFePO4 and carbon was equal to 160 mAh/g at a current density of 20 mA/g and 80 mAh/g at a current density of 800 mA/g.
Tài liệu tham khảo
L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough, Energy Environ. Sci. 4, 269 (2011).
S. Franger, F. le Cras, C. Bourbon, and H. Rouault, J. Power Sources 119, 252 (2003).
I. B. Weinstock, J. Power Sources 110, 471 (2002).
Z. Li, D. Zhang, and F. Yang, J. Mater. Sci. 44, 2435 (2009).
M. S. Whittingham, Chem. Rev. 104, 4271 (2004).
C. Delmas, M. Maccario, L. Croguennec, F. le Cras, and F. Weill, Nat. Mater. 7, 665 (2008).
A. Yamada, H. Koizumi, S.-i. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, and Y. Kobayashi, Nat. Mater. 5, 357 (2006).
D. Safronov, S. Novikova, A. Skundin, and A. Yaroslavtsev, Inorg. Mater. 48, 57 (2012).
C. Benoit and S. Franger, J. Solid State Electrochem. 12, 987 (2008).
Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, Angew. Chem., Int. Ed. Engl. 47, 7461 (2008).
M. Wagemaker, D. P. Singh, W. J. Borghols, U. Lafont, L. Haverkate, V. K. Peterson, and F. M. Mulder, J. Am. Chem. Soc. 133, 10222 (2011).
C. Sun, S. Rajasekhara, J. B. Goodenough, and F. Zhou, J. Am. Chem. Soc. 133, 2132 (2011).
C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, Electrochem. Solid State Lett. 9, A352 (2006).
V. S. Pervov, E. V. Makhonina, A. E. Zotova, N. V. Kireeva, and I.-M. A. Kedrinskii, Nanotechnol. Russ. 9, 347 (2014).
A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).
M. S. Islam and C. A. Fisher, Chem. Soc. Rev. 43, 185 (2014).
M. S. Islam, D. J. Driscoll, C. A. Fisher, and P. R. Slater, Chem. Mater. 17, 5085 (2005).
D. Morgan, A. Van der Ven, and G. Ceder, Electrochem. Solid State Lett. 7, A30 (2004).
C. A. Fisher and M. S. Islam, J. Mater. Chem. 18, 1209 (2008).
T. Nakamura, Y. Miwa, M. Tabuchi, and Y. Yamada, J. Electrochem. Soc. 153, A1108 (2006).
H. Gao, L. Jiao, J. Yang, Z. Qi, Y. Wang, and H. Yuan, Electrochim. Acta 97, 143 (2013).
R. Kapaev, S. Novikova, T. Kulova, A. Skundin, and A. Yaroslavtsev, J. Solid State Electrochem. 19, 2793 (2015).
K. Park, J. Son, H. Chung, S. Kim, C. Lee, and H. Kim, Electrochem. Commun. 5, 839 (2003).
O. A. Drozhzhin, V. D. Sumanov, O. M. Karakulina, A. M. Abakumov, J. Hadermann, A. N. Baranov, K. J. Stevenson, and E. V. Antipov, Electrochim. Acta 191, 149 (2016).
M. K. Devaraju and I. Honma, Adv. Energy Mater. 2, 284 (2012).
Y. Zhao, L. Peng, B. Liu, and G. Yu, Nano Lett. 14, 2849 (2014).
M. Zhang, R. Liu, F. Feng, S. Liu, and Q. Shen, J. Phys. Chem. C 119, 12149 (2015).
C. Nan, J. Lu, C. Chen, Q. Peng, and Y. Li, J. Mater. Chem. 21, 9994 (2011).
L. Wang, X. He, W. Sun, J. Wang, Y. Li, and S. Fan, Nano Lett. 12, 5632 (2012).
S. Ju, H. Peng, G. Li, and K. Chen, Mater. Lett. 74, 22 (2012).
X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, and Y. Zhou, J. Phys. Chem. C 114, 16806 (2010).
W. Kang, C. Zhao, R. Liu, F. Xu, and Q. Shen, Cryst. Eng. Comm. 14, 2245 (2012).
K. Dokko, S. Koizumi, H. Nakano, and K. Kanamura, J. Mater. Chem. 17, 4803 (2007).
S. Novikova, S. Yaroslavtsev, V. Rusakov, A. Chekannikov, T. Kulova, A. Skundin, and A. Yaroslavtsev, J. Power Sources 300, 444 (2015).