Synthesis of Ge/C composite as an anode material for lithium ion batteries

Vietnam Journal of Catalysis and Adsorption - Tập 11 Số 4 - Trang 26-30 - 2022
Le Thi Thao1, Phan Thi Thuy1, Tran Thi Thu Phuong1, Nguyen Thi Lan1, Nguyen Van Thang1, Vo Vien1
1Faculty of Natural Sciences, Quy Nhon University

Tóm tắt

The Ge/C composite was prepared by hydrothermal method using Germani (Ge) and carbon (C) as precursors, in which C was prepared from waste banana peel as biomass source and Ge was obtained from reduction of GeO2 by Mg at 650 oC. The synthesized composite was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM); and used as lithium ion battery anode material. The results showed that the Ge/C anode exhibited a higher capacity and stablity than those of the pure Ge. This observation can indicate that the Ge/C composite may be a new class of promising negative electrode material for lithium ion batteries in the future.

Từ khóa

#Germanium #Lithium batteries #Activated carbon #biomass

Tài liệu tham khảo

Lee, J. K., Oh, C., Kim, N., Hwang, J.-Y., & Sun, Y.-K., Journal of Materials Chemistry A. 4 (2016) 5366–5384. https://doi.org/10.1039/C6TA00265J .

Guney, M. S., Renewable and Sustainable Energy Reviews 15 (2011) 3669–3675. https://:10.1016/ j.rser.2011.07.009.

J.F. Ruan, T. Yuan, Y.P. Pang, S.N. Luo, C.X. Peng, J.H. Yang, S.Y. Zheng, Carbon 126 (2018) 9-16. https://doi.org/10.1016/j.carbon.2017.09.099.

C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, J. Mater. Chem. 22 (2012) 12008-12015. https://doi.org/10.1039/ C2JM31971C.

D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, Y.F. Liu, J. Power Sources 256 (2014) 190-199. https://doi.org/10.1016/j.jpowsour.2013.12.128.

C. Liang, M.X. Gao, H.G. Pan, Y.F. Liu, M. Yan, J. Alloy. Comp. . 575 (2013) 246-256. https://doi.org/10.1016/j.jallcom.2013.04.001.

M. Feng, J. Tian, H. Xie, Y. Kang, Z. Shan, J. Solid State Electrochem. 19 (2015) 1773-1782. https://doi.org/10.1007/s10008-015-2807-x.

Cheon, J.H., J. Korean Phys. Soc. 62 (2013) 1119-1124. https://doi.org/10.3938/jkps.62.1119.

Rui Xu, Songping Wu, Yao Du, Zhen Zhang, Chemical Engineering Journal 296 (2016) 349–355. https://doi.org/10.1016/j.cej.2016.03.126.

C.K. Chan, X.F. Zhang, Y. Cui, Nano Lett. 8 (2008) 307-309. https://doi.org/10.1021/nl0727157.

Gao, R., Liu, H., Fu, B., Li, S., Long, Z., Sun, D., & Song, Y., Journal of Alloys and Compounds. 820 (2020) 153295. https://doi.org/10.1016/j.jallcom. 2019.153295.

Shan Fang, Zhenkun Tong, Xiaogang Zhang, Chemical Engineering Journal 322 (2017) 188–195. https://doi.org/10.1016/j.cej.2017.04.017.

Catherine, Y., & Turban, G., Thin Solid Films 70 (1980) 101-104. https://doi.org/10.1016/0040-6090(80)90416-2.

Azargohar, R., & Dalai, A. K., In Twenty-seventh symposium on biotechnology for fuels and chemicals (2006) 762-773. https://doi.org/10.1385/ ABAB:131:1:762.

Kuok Hau Seng, Mi-hee Park, Zai Ping Guo, Hua Kun Liu, and Jaephil Cho, Nano Lett. 13 (2013) 1230–1236. https://doi.org/10.1021/nl304716e.

Xin Liu, Xue-Yan Wu, Baobao Chang, Kai-Xue Wang, Energy Storage Materials 30 (2020) 146-169. https://doi.org/10.1016/j.ensm.2020.05.010.

Q. Liu, J. Hou, C. Xu, Z. Chen, R. Qin, H. Liu, Chem. Eng. J. 381 (2020) 122649. https://doi.org/10.1016/j.cej.2019.122649.

Kuok Hau Seng, Mi-hee Park, Zai Ping Guo, Hua Kun Liu, and Jaephil Cho, Nano Lett. 13 (2013) 1230-1236. https://doi.org/10.1021/nl304716e.