Synthesis of Fluorine‐Containing Multisubstituted Phenanthridines by Rhodium‐Catalyzed Alkyne [2+2+2] Cycloaddition and Tandem sp<sup>2</sup> CH Difluoromethylenation

Chemistry - A European Journal - Tập 19 Số 25 - Trang 8294-8299 - 2013
Yajun Li1,2, Jiangtao Zhu1, Lisi Zhang1, Yongming Wu1,3,4, Yuefa Gong2,3,4
1Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032 (P.R. China)
2School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (P.R. China)
3Yongming Wu, Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032 (P.R. China)
4Yuefa Gong, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (P.R. China)

Tóm tắt

AbstractA highly efficient method for the synthesis of fluorine‐containing multisubstituted phenanthridines through Rh‐catalyzed alkyne [2+2+2] cycloaddition reactions has been developed. This method exhibits excellent functional‐group compatibility. When a bromodifluoromethyl group, rather than a trifluoromethyl group, was employed in the cycloaddition reaction, more‐complicated polycyclic compounds were obtained through tandem Rh‐catalyzed cycloaddition/CH difluoromethylenation. This route provides convenient access to fluorine‐containing polycyclic compounds.

Từ khóa


Tài liệu tham khảo

 

10.1002/jlac.19485600102

10.1002/jlac.19485600104

10.1021/jo9001678

For recent reviews on the synthesis of ring systems by using [2+2+2] cycloaddition reactions see:

10.1002/adsc.200600325

10.1039/b517696b

10.1039/b607877j

10.1055/s-2007-984541

10.1039/b720031e

Varela J. A., 2008, Synlett, 2571

10.1002/ange.200804651

10.1002/anie.200804651

10.1016/j.tet.2011.04.096

10.1039/c1cs15029d

10.1039/c0cs00189a

Shibata Y., 2012, Synthesis, 323

10.3987/REV-12-729

10.1021/jo702508w

10.2174/1385272053544399

 

10.1002/ange.200901962

10.1002/anie.200901962

10.1021/ol100227k

10.1021/ol9014893

10.1002/1521-3757(20020902)114:17<3415::AID-ANGE3415>3.0.CO;2-X

10.1002/1521-3773(20020902)41:17<3281::AID-ANIE3281>3.0.CO;2-G

 

10.1002/1098-1128(200101)21:1<61::AID-MED2>3.0.CO;2-F

10.2174/0929867023369277

For recent examples see:

10.1021/jo070625g

10.1021/jo701387m

10.1002/ange.200804683

10.1002/anie.200804683

10.1002/ange.200902400

10.1002/anie.200902400

10.1021/ol102509n

10.1002/adsc.201000114

10.1021/jo9025918

10.1021/jo102124d

10.1021/jo201542x

10.1039/c1cc12720a

For selected reviews see:

10.1002/352760393X

10.1002/9780470988589

10.1126/science.1131943

10.1002/9781444312096

10.1517/17460441003652967

 

10.1002/adsc.201000180

10.1002/cjoc.201180442

10.1002/adsc.201000689

10.1021/ol101859p

10.1016/j.jfluchem.2011.01.003

 

10.1016/j.jfluchem.2005.02.016

10.1021/jo00053a011

10.1039/C1OB06528A

10.1021/ol800512m

10.1002/adsc.200600317

Similar results have also been reported in other Rh‐catalyzed [2+2+2] cycloaddition reactions involving dimethyl acetylenedicarboxylate (DMAD); see:

10.1016/j.tetlet.2007.11.103

10.1016/j.tet.2010.06.011

10.1021/cr990281x

CCDC‐867082 (7 a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viawww.ccdc.cam. ac.uk/data_request/cif.

10.1039/c2cc30207a