Synthesis of Cu-TiNT, characterization, and antibacterial properties evaluation

Materials Today Chemistry - Tập 21 - Trang 100539 - 2021
T.S. Freitas1, T.M.F. Marques2, L.N.L.C. Barros3, J.H. da Silva3, R.P. Cruz1, R.L.S. Pereira1, A.R.P. Silva1, A.T.L. Santos1, A. Ghosh4, E.V.H. Agressott4, B.C. Viana2,5, H.D.M. Coutinho1, P.T.C. Freire4
1Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, CEP 63105-000, Crato, CE, Brazil
2LIMAV – Pós Graduação em Ciências dos Materiais, Universidade Federal do Piauí – UFPI, 64049-550, Teresina, PI, Brazil
3Centro de Ciências e Tecnologia – CCT, Universidade Federal do Cariri, CEP 63000-000, Juazeiro do Norte, CE, Brazil
4Departamento de Física and Central Analítica, Universidade Federal do Ceará – UFC, 60440-554, Fortaleza, CE, Brazil
5Departamento de Física, Universidade Federal do Piauí – UFPI, 64049-550, Teresina, PI, Brazil

Tài liệu tham khảo

Veselinović, 2018, QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bactéria, Struct. Chem., 29, 541, 10.1007/s11224-017-1051-7 Schwarz, 2017, Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine, Adv. Vet. Dermatol., 8, 95, 10.1002/9781119278368.ch5.1 Douafer, 2019, Antibiotic adjuvants: make antibiotics great again!, J. Med. Chem., 62, 8665, 10.1021/acs.jmedchem.8b01781 Liu, 2019, Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bactéria, Crit. Rev. Microbiol., 45, 301, 10.1080/1040841X.2019.1599813 Khan, 2019, I Nanoparticles: properties, applications and toxicities, Arab. J. Chem., 12, 908, 10.1016/j.arabjc.2017.05.011 Anselmo, 2019, Nanoparticles in the clinic: an update, Bioeng. Transl. Med., 4, 10.1002/btm2.10143 Wang, 2017, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int. J. Nanomed., 12, 1227, 10.2147/IJN.S121956 Niño-Martínez, 2019, Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles, Int. J. Mol. Sci., 20, 2808, 10.3390/ijms20112808 Lee, 2019, Nanoparticles in the treatment of infections caused by multidrug-resistant organisms, Front. Pharmacol., 10, 1153, 10.3389/fphar.2019.01153 Sales, 2020, Synthesis of silver-cerium titanate nanotubes and their surface properties and antibacterial applications, Mater. Sci. Eng. C, 115, 111051, 10.1016/j.msec.2020.111051 Tang, 2018, Antibacterial activity of silver nanoparticles: structural effects, Adv. Healthcare Mater., 7, 1701503, 10.1002/adhm.201701503 Bellio, 2018, Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability, Biochim. Biophys. Acta Biomembr., 1860, 2428, 10.1016/j.bbamem.2018.07.002 Maxwell, 2020, Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin, Environ. Nanotechnol. Monit. Manag., 14, 100355 Liu, 2014, Synergy of photocatalysis and adsorption for simultaneous removal of Cr (VI) and Cr (III) with TiO 2 and titanate nanotubes, Water Res., 53, 12, 10.1016/j.watres.2013.12.043 Zavala, 2017, Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature, Heliyon, 3 Das, 2021, Ion beam engineered hydrogen titanate nanotubes for superior energy storage application, Electrochim. Acta, 371, 137774, 10.1016/j.electacta.2021.137774 Saleh, 2021, Consecutive removal of heavy metals and dyes by a fascinating method using titanate nanotubes, J. Environ. Chem. Eng., 9, 104726 Dagdeviren, 2014, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring, Nat. Commun., 5, 1 Leite, 2020, Electrochemistry of sodium titanate nanotubes as a negative electrode for sodium-ion batteries, Electrochim. Acta, 331, 135422, 10.1016/j.electacta.2019.135422 Kim, 2014, Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: an effective way to tailor the physicochemical and antibacterial properties of graphene film, Adv. Funct. Mater., 24, 2288, 10.1002/adfm.201303040 Hassan, 2018, New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes, J. Radiat. Res. Appl. Sci., 11, 262, 10.1016/j.jrras.2018.05.003 Morsi, 2017, Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics, Int. J. Biol. Macromol., 97, 264, 10.1016/j.ijbiomac.2017.01.032 Chen, 2017, Synthesis of copper phosphide nanotube arrays as electrodes for asymmetric supercapacitors, ACS Sustain. Chem. Eng., 5, 3863, 10.1021/acssuschemeng.6b03006 Rajeshkumar, 2018, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds, OpenNano, 3, 18, 10.1016/j.onano.2018.03.001 Lima, 2016, Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol, Microb. Pathog., 99, 56, 10.1016/j.micpath.2016.08.004 2008 Gallucci, 2009, Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus, Flavour Fragrance J., 24, 348, 10.1002/ffj.1948 Coutinho, 2008, Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L and chlorpromazine, Chemotherapy, 54, 328, 10.1159/000151267 Viana, 2011, Alkali metal intercalated titanate nanotubes: a vibrational spectroscopy study, Vib. Spectrosc., 55, 183, 10.1016/j.vibspec.2010.11.007 Chen, 2002, The structure of trititanate nanotubes, Acta Crystallogr. Sect. B Struct. Sci., 58, 587, 10.1107/S0108768102009084 Ferreira, 2006, Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes, J. Braz. Chem. Soc., 17, 393, 10.1590/S0103-50532006000200025 dos Santos, 2013, Metal cations intercalated titanate nanotubes as catalysts for α, β unsaturated esters production, Appl. Catal. Gen., 454, 74, 10.1016/j.apcata.2012.12.035 Bavykin, 2006, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater., 18, 2807, 10.1002/adma.200502696 Su, 2000, Raman spectroscopic studies of silicotitanates, J. Phys. Chem. B, 104, 8160, 10.1021/jp0018807 Holetz, 2002, Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases, Memórias do Inst. Oswaldo Cruz, 97, 1027, 10.1590/S0074-02762002000700017 Yamaguchi, 2017, Two-in-One biointerfaces—antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants, Nanomaterials, 7, 229, 10.3390/nano7080229 Xu, 2016, Antibacterial activity of silver doped titanate nanowires on Ti implants, ACS Appl. Mater. Interfaces, 8, 16584, 10.1021/acsami.6b04161 Kizuki, 2014, Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys, J. Mater. Sci. Mater. Med., 25, 1737, 10.1007/s10856-014-5201-9 Zenteno, 2015, Effect of hydrothermally synthesized titanium nanotubes on the behaviour of polypropylene for antimicrobial applications, Polym. Int., 64, 1442, 10.1002/pi.4939 Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4, 707, 10.1016/j.actbio.2007.11.006 Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004 Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055 Yu-sen, 1998, Inactivation of Mycobacterium avium by copper and silver ions, Water Res., 32, 1997, 10.1016/S0043-1354(97)00460-0 Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059 Dakal, 2016, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 7, 1831, 10.3389/fmicb.2016.01831 Stohs, 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med., 18, 321, 10.1016/0891-5849(94)00159-H Anacona, 1999, Zinc(ii), Cadmium(ii), Mercury(ii) and Lead(ii) semiquinone-type complexes of a new Schiff-base ligand: antibacterial studies, J. Coord. Chem., 48, 513, 10.1080/00958979908023591 Rónavári, 2016, Ion exchange defines the biological activity of titanate nanotubes, J. Basic Microbiol., 56, 557, 10.1002/jobm.201500742 Nogueira, 2014, Evaluation of antibacterial, antifungal and modulatory activity of methanol and ethanol extracts of Padina sanctae-crucis, Afr. Health Sci., 14, 372, 10.4314/ahs.v14i2.12 Tintino, 2016, Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps, EXCLI J., 15, 315 Moura, 2017, Ag2MoO4 microcrystals : characterization, antibacterial properties and modulation analysis of antibiotic activity, Biomed. Pharmacother., 86, 242, 10.1016/j.biopha.2016.12.016 Redgrave, 2014, Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success, Trends Microbiol., 22, 438, 10.1016/j.tim.2014.04.007 Blair, 2015, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13, 42, 10.1038/nrmicro3380 Liang, 2015, Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumonia in a hospital in China, Int. J. Clin. Exp. Med., 8, 1381 Temiz, 2014, Relationship between the resistance genes to quaternary ammonium compounds and antibiotic resistance in staphylococci isolated from surgical site infections, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res.: Int. Med. J. Exp. Clin. Res., 20, 544