Synthesis of Cu-TiNT, characterization, and antibacterial properties evaluation
Tài liệu tham khảo
Veselinović, 2018, QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bactéria, Struct. Chem., 29, 541, 10.1007/s11224-017-1051-7
Schwarz, 2017, Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine, Adv. Vet. Dermatol., 8, 95, 10.1002/9781119278368.ch5.1
Douafer, 2019, Antibiotic adjuvants: make antibiotics great again!, J. Med. Chem., 62, 8665, 10.1021/acs.jmedchem.8b01781
Liu, 2019, Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bactéria, Crit. Rev. Microbiol., 45, 301, 10.1080/1040841X.2019.1599813
Khan, 2019, I Nanoparticles: properties, applications and toxicities, Arab. J. Chem., 12, 908, 10.1016/j.arabjc.2017.05.011
Anselmo, 2019, Nanoparticles in the clinic: an update, Bioeng. Transl. Med., 4, 10.1002/btm2.10143
Wang, 2017, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int. J. Nanomed., 12, 1227, 10.2147/IJN.S121956
Niño-Martínez, 2019, Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles, Int. J. Mol. Sci., 20, 2808, 10.3390/ijms20112808
Lee, 2019, Nanoparticles in the treatment of infections caused by multidrug-resistant organisms, Front. Pharmacol., 10, 1153, 10.3389/fphar.2019.01153
Sales, 2020, Synthesis of silver-cerium titanate nanotubes and their surface properties and antibacterial applications, Mater. Sci. Eng. C, 115, 111051, 10.1016/j.msec.2020.111051
Tang, 2018, Antibacterial activity of silver nanoparticles: structural effects, Adv. Healthcare Mater., 7, 1701503, 10.1002/adhm.201701503
Bellio, 2018, Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability, Biochim. Biophys. Acta Biomembr., 1860, 2428, 10.1016/j.bbamem.2018.07.002
Maxwell, 2020, Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin, Environ. Nanotechnol. Monit. Manag., 14, 100355
Liu, 2014, Synergy of photocatalysis and adsorption for simultaneous removal of Cr (VI) and Cr (III) with TiO 2 and titanate nanotubes, Water Res., 53, 12, 10.1016/j.watres.2013.12.043
Zavala, 2017, Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature, Heliyon, 3
Das, 2021, Ion beam engineered hydrogen titanate nanotubes for superior energy storage application, Electrochim. Acta, 371, 137774, 10.1016/j.electacta.2021.137774
Saleh, 2021, Consecutive removal of heavy metals and dyes by a fascinating method using titanate nanotubes, J. Environ. Chem. Eng., 9, 104726
Dagdeviren, 2014, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring, Nat. Commun., 5, 1
Leite, 2020, Electrochemistry of sodium titanate nanotubes as a negative electrode for sodium-ion batteries, Electrochim. Acta, 331, 135422, 10.1016/j.electacta.2019.135422
Kim, 2014, Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: an effective way to tailor the physicochemical and antibacterial properties of graphene film, Adv. Funct. Mater., 24, 2288, 10.1002/adfm.201303040
Hassan, 2018, New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes, J. Radiat. Res. Appl. Sci., 11, 262, 10.1016/j.jrras.2018.05.003
Morsi, 2017, Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics, Int. J. Biol. Macromol., 97, 264, 10.1016/j.ijbiomac.2017.01.032
Chen, 2017, Synthesis of copper phosphide nanotube arrays as electrodes for asymmetric supercapacitors, ACS Sustain. Chem. Eng., 5, 3863, 10.1021/acssuschemeng.6b03006
Rajeshkumar, 2018, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds, OpenNano, 3, 18, 10.1016/j.onano.2018.03.001
Lima, 2016, Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol, Microb. Pathog., 99, 56, 10.1016/j.micpath.2016.08.004
2008
Gallucci, 2009, Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus, Flavour Fragrance J., 24, 348, 10.1002/ffj.1948
Coutinho, 2008, Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L and chlorpromazine, Chemotherapy, 54, 328, 10.1159/000151267
Viana, 2011, Alkali metal intercalated titanate nanotubes: a vibrational spectroscopy study, Vib. Spectrosc., 55, 183, 10.1016/j.vibspec.2010.11.007
Chen, 2002, The structure of trititanate nanotubes, Acta Crystallogr. Sect. B Struct. Sci., 58, 587, 10.1107/S0108768102009084
Ferreira, 2006, Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes, J. Braz. Chem. Soc., 17, 393, 10.1590/S0103-50532006000200025
dos Santos, 2013, Metal cations intercalated titanate nanotubes as catalysts for α, β unsaturated esters production, Appl. Catal. Gen., 454, 74, 10.1016/j.apcata.2012.12.035
Bavykin, 2006, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater., 18, 2807, 10.1002/adma.200502696
Su, 2000, Raman spectroscopic studies of silicotitanates, J. Phys. Chem. B, 104, 8160, 10.1021/jp0018807
Holetz, 2002, Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases, Memórias do Inst. Oswaldo Cruz, 97, 1027, 10.1590/S0074-02762002000700017
Yamaguchi, 2017, Two-in-One biointerfaces—antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants, Nanomaterials, 7, 229, 10.3390/nano7080229
Xu, 2016, Antibacterial activity of silver doped titanate nanowires on Ti implants, ACS Appl. Mater. Interfaces, 8, 16584, 10.1021/acsami.6b04161
Kizuki, 2014, Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys, J. Mater. Sci. Mater. Med., 25, 1737, 10.1007/s10856-014-5201-9
Zenteno, 2015, Effect of hydrothermally synthesized titanium nanotubes on the behaviour of polypropylene for antimicrobial applications, Polym. Int., 64, 1442, 10.1002/pi.4939
Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4, 707, 10.1016/j.actbio.2007.11.006
Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004
Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055
Yu-sen, 1998, Inactivation of Mycobacterium avium by copper and silver ions, Water Res., 32, 1997, 10.1016/S0043-1354(97)00460-0
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Dakal, 2016, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 7, 1831, 10.3389/fmicb.2016.01831
Stohs, 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med., 18, 321, 10.1016/0891-5849(94)00159-H
Anacona, 1999, Zinc(ii), Cadmium(ii), Mercury(ii) and Lead(ii) semiquinone-type complexes of a new Schiff-base ligand: antibacterial studies, J. Coord. Chem., 48, 513, 10.1080/00958979908023591
Rónavári, 2016, Ion exchange defines the biological activity of titanate nanotubes, J. Basic Microbiol., 56, 557, 10.1002/jobm.201500742
Nogueira, 2014, Evaluation of antibacterial, antifungal and modulatory activity of methanol and ethanol extracts of Padina sanctae-crucis, Afr. Health Sci., 14, 372, 10.4314/ahs.v14i2.12
Tintino, 2016, Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps, EXCLI J., 15, 315
Moura, 2017, Ag2MoO4 microcrystals : characterization, antibacterial properties and modulation analysis of antibiotic activity, Biomed. Pharmacother., 86, 242, 10.1016/j.biopha.2016.12.016
Redgrave, 2014, Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success, Trends Microbiol., 22, 438, 10.1016/j.tim.2014.04.007
Blair, 2015, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13, 42, 10.1038/nrmicro3380
Liang, 2015, Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumonia in a hospital in China, Int. J. Clin. Exp. Med., 8, 1381
Temiz, 2014, Relationship between the resistance genes to quaternary ammonium compounds and antibiotic resistance in staphylococci isolated from surgical site infections, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res.: Int. Med. J. Exp. Clin. Res., 20, 544