Synthesis of Carbamoyl Azides and 1-Substituted Tetrazol-5-ones from Isocyanates and NaN3 in the Presence of ZnCl2

Russian Journal of General Chemistry - Tập 92 - Trang 801-805 - 2022
Е. А. Tishchenko1, L. V. Myznikov1
1Institute of Experimental Medicine, St. Petersburg, Russia

Tóm tắt

Isocyanates readily reacts with NaN3 in the presence of ZnCl2 in organic solvents to form the corresponding carbamoyl azides. The formation of carbamoyl azides completed in 5–10 min at room temperature, which prevent the risk of release of hydrogen azide. The obtained carbamoyl azides without isolation can be used for the preparation of 1-substituted tetrazol-5-ones.

Tài liệu tham khảo

Song, S., Feng, P., Zou, M., and Jiao, N., Chin. J. Chem., 2017, vol. 35, no. 6, p. 845. https://doi.org/10.1002/cjoc.201600914 Frost, G.B., Mittelstaedt, M.N., and Douglas, C., J. Chem. Eur. J., 2019, vol. 25, no. 7, p. 1727. https://doi.org/10.1002/chem.201805904 Haldon, E., Alvarez, E., Nicasio, M.C., and Perez, P., J. Chem. Commun., 2014, vol. 50, no. 64, p. 8978. https://doi.org/10.1039/c4cc03614j Janssens, F., Torremans, J., and Janssen, P.A.J., J. Med. Chem., 1986, vol. 29, no. 11, p. 2290. https://doi.org/10.1021/jm00161a027 Toshio, G., Koichi, M., Fritz, M., Seishi, I., and Katsuaki, W., Patent US 5362704A1, 1997. Lieber, E., Minnis, R.L., and Rao, C.N.R., Chem. Rev., 1965, vol. 65, no. 3, p. 377. https://doi.org/10.1021/cr60235a003 Tsuge, O., Urano, S., and Oe, K., J. Org. Chem., 1980, vol. 45, no. 25, p. 5130. https://doi.org/10.1021/jo01313a021 Li, X.-Q., Wang, W.-K., Han, Y.-X., and Zhang, C., Adv. Synth. Catal., 2010, vol. 352, nos. 14–15, p. 2528. https://doi.org/10.1002/adsc.201000318 Wei, R., Ge, L., Bao, H., Liao, S., and Li, Y., Synthesis, 2019, vol. 51, no. 24, p. 4645. https://doi.org/10.1055/s-0039-1690683 García-Egido, E., Fernández-Suárez, M., and Muñoz, L., J. Org. Chem., 2008, vol. 73, no. 7, p. 2909. https://doi.org/10.1021/jo702506v Feng, P., Sun, X., Su, Y., Li, X., Zhang, L., Shi, X., and Jiao, N., Org. Lett., 2014, vol. 16, no. 12, p. 3388. https://doi.org/10.1021/ol5014476 Shul’gin, V.F., Kiskin, M.A., Gusev, A.N., Baluda, Yu.I., and Ryush, I.O., Russ. J. Coord. Chem., 2021, vol. 47, no. 5, p. 326. https://doi.org/10.1134/S1070328421050079 Sapchenko, S.A., Saparbaev, E.S., Samsonenko, D.G., Dybtsev, D.N., and Fedin, V.P., Russ. J. Coord. Chem., 2013, vol. 39, no. 8, p. 549. https://doi.org/10.1134/S1070328413080071 Shin, M.S., Oh, B.J., Ryu, J.Y., Park, M.H., Kim, M., Lee, J., and Kim, Y., Polyhedron, 2017, vol. 125, p. 101. https://doi.org/10.1016/j.poly.2016.10.005 Demko, Z.P. and Sharpless, K.B., J. Org. Chem., 2001, vol. 66, p. 7945. https://doi.org/10.1021/jo010635w Myznikov, L.V., Vorona, S.V., Artamonova, T.V., and Zevatskii, Y.E., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 731. https://doi.org/10.1134/S1070363217040119 Vorona, S.V., Zevatskii, Y.E., and Myznikov, L.V., ChemistrySelect, 2019, vol. 4, no. 36, p. 10846. https://doi.org/10.1002/slct.201903162