Synthesis of Carbamoyl Azides and 1-Substituted Tetrazol-5-ones from Isocyanates and NaN3 in the Presence of ZnCl2
Tóm tắt
Isocyanates readily reacts with NaN3 in the presence of ZnCl2 in organic solvents to form the corresponding carbamoyl azides. The formation of carbamoyl azides completed in 5–10 min at room temperature, which prevent the risk of release of hydrogen azide. The obtained carbamoyl azides without isolation can be used for the preparation of 1-substituted tetrazol-5-ones.
Tài liệu tham khảo
Song, S., Feng, P., Zou, M., and Jiao, N., Chin. J. Chem., 2017, vol. 35, no. 6, p. 845. https://doi.org/10.1002/cjoc.201600914
Frost, G.B., Mittelstaedt, M.N., and Douglas, C., J. Chem. Eur. J., 2019, vol. 25, no. 7, p. 1727. https://doi.org/10.1002/chem.201805904
Haldon, E., Alvarez, E., Nicasio, M.C., and Perez, P., J. Chem. Commun., 2014, vol. 50, no. 64, p. 8978. https://doi.org/10.1039/c4cc03614j
Janssens, F., Torremans, J., and Janssen, P.A.J., J. Med. Chem., 1986, vol. 29, no. 11, p. 2290. https://doi.org/10.1021/jm00161a027
Toshio, G., Koichi, M., Fritz, M., Seishi, I., and Katsuaki, W., Patent US 5362704A1, 1997.
Lieber, E., Minnis, R.L., and Rao, C.N.R., Chem. Rev., 1965, vol. 65, no. 3, p. 377. https://doi.org/10.1021/cr60235a003
Tsuge, O., Urano, S., and Oe, K., J. Org. Chem., 1980, vol. 45, no. 25, p. 5130. https://doi.org/10.1021/jo01313a021
Li, X.-Q., Wang, W.-K., Han, Y.-X., and Zhang, C., Adv. Synth. Catal., 2010, vol. 352, nos. 14–15, p. 2528. https://doi.org/10.1002/adsc.201000318
Wei, R., Ge, L., Bao, H., Liao, S., and Li, Y., Synthesis, 2019, vol. 51, no. 24, p. 4645. https://doi.org/10.1055/s-0039-1690683
García-Egido, E., Fernández-Suárez, M., and Muñoz, L., J. Org. Chem., 2008, vol. 73, no. 7, p. 2909. https://doi.org/10.1021/jo702506v
Feng, P., Sun, X., Su, Y., Li, X., Zhang, L., Shi, X., and Jiao, N., Org. Lett., 2014, vol. 16, no. 12, p. 3388. https://doi.org/10.1021/ol5014476
Shul’gin, V.F., Kiskin, M.A., Gusev, A.N., Baluda, Yu.I., and Ryush, I.O., Russ. J. Coord. Chem., 2021, vol. 47, no. 5, p. 326. https://doi.org/10.1134/S1070328421050079
Sapchenko, S.A., Saparbaev, E.S., Samsonenko, D.G., Dybtsev, D.N., and Fedin, V.P., Russ. J. Coord. Chem., 2013, vol. 39, no. 8, p. 549. https://doi.org/10.1134/S1070328413080071
Shin, M.S., Oh, B.J., Ryu, J.Y., Park, M.H., Kim, M., Lee, J., and Kim, Y., Polyhedron, 2017, vol. 125, p. 101. https://doi.org/10.1016/j.poly.2016.10.005
Demko, Z.P. and Sharpless, K.B., J. Org. Chem., 2001, vol. 66, p. 7945. https://doi.org/10.1021/jo010635w
Myznikov, L.V., Vorona, S.V., Artamonova, T.V., and Zevatskii, Y.E., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 731. https://doi.org/10.1134/S1070363217040119
Vorona, S.V., Zevatskii, Y.E., and Myznikov, L.V., ChemistrySelect, 2019, vol. 4, no. 36, p. 10846. https://doi.org/10.1002/slct.201903162