Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties

S. Suresh1, K.P. Venkitaraj1, P. Selvakumar1, M. Chandrasekar2
1Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
2Department of Mechanical Engineering, Anna University of Technology, Tiruchirappalli 620024, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99

Eastman, 1997, Enhanced thermal conductivity through the development of nanofluids, vol. 457

Wang, 1999, Thermal conductivity of nanoparticle–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticles suspensions (nanofluids), J. Appl. Phys., 99, 084314, 10.1063/1.2191571

Zhu, 2006, Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys. Lett., 89, 023123-1, 10.1063/1.2221905

Chandrasekhar, 2010, Experimental investigations and theoretical determination of thermal conductivity of Al2O3/water nanofluid, Exp. Therm. Fluid Sci., 34, 210, 10.1016/j.expthermflusci.2009.10.022

Keblinski, 2002, Mechanism of heat flow in suspensions of nanosized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2

Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei (Japan), 4, 227, 10.2963/jjtp.7.227

Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

Mintsa, 2009, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci., 48, 363, 10.1016/j.ijthermalsci.2008.03.009

Jena, 2001, In-situ formation of Cu–Al2O3 nano-scale composites by chemical routes and studies on their microstructures, Mater. Sci. Eng., A313, 180, 10.1016/S0921-5093(00)01998-5

Niihara, 1991, New design concept of structural ceramics–ceramic nanocomposites, J. Ceram. Soc. Jpn., 99, 974, 10.2109/jcersj.99.974

Oh, 1998, Nanostruct. Mater., 10, 327, 10.1016/S0965-9773(98)00072-5

Oh, 1998, J. Eur. Ceram. Soc., 18, 31, 10.1016/S0955-2219(97)00099-X

Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

Hagen, 1999

Vargaftik, 1975

Kothandaraman, 2007

Pastoriza-Gallego, 2009, A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluids, J. Appl. Phys., 106, 064301, 10.1063/1.3187732

Pastoriza-Gallego, 2011, CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilibria, 300, 188, 10.1016/j.fluid.2010.10.015

Maxwell, 1881

Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam., 1, 187, 10.1021/i160003a005

Weber, 1880, Wiedermann's, Ann. Phys. Chem., 10, 103, 10.1002/andp.18802460508

Einstein, 1956

Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493

Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062