Tổng hợp vi cầu rỗng AirRGO@FeCo có tính chất hấp thụ sóng vi ba mạnh mẽ

Journal of Materials Research - Tập 37 - Trang 1798-1809 - 2022
Qi Yu1, Chaofan Liu1, Weicheng Nie1, Ping Chen2, Yanan Xue1, Yiming Tang1
1Faculty of Materials Science and Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang, China
2School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China

Tóm tắt

Một loại vi cầu rỗng graphene oxide khử (AirRGO@FeCo) được tổng hợp bằng công nghệ nhũ hóa dầu trong nước và quá trình nung nóng ở nhiệt độ cao. Bằng cách điều chỉnh nồng độ dung dịch nước GO, năm loại vi cầu rỗng với công thức RGO khác nhau đã được tổng hợp. Đường kính của vi cầu rỗng tổng hợp được là 4-6 μm, và độ dày của vỏ cầu có thể điều chỉnh từ 0.1 đến 1 μm. Khi nồng độ dung dịch nước GO đạt 6 mg/ml, AirRGO@FeCo thể hiện tính chất hấp thụ sóng điện từ xuất sắc với giá trị tổn hao phản xạ tối ưu đạt tới −73.47 dB ở tần số 13.75 GHz và băng tần hiệu quả rộng (dưới −10 dB) là 7.23 GHz (từ 10.77 đến 18 GHz) tại độ dày 2.4 mm. Các hiệu ứng tổng hợp của tổn hao điện môi và cơ chế tổn hao từ tính cũng như các đặc tính khớp trở kháng tuyệt vời và khả năng suy giảm mạnh mẽ khiến vi cầu rỗng AirRGO@FeCo đạt được khả năng hấp thụ sóng vi ba hiệu quả cao.

Từ khóa

#AirRGO@FeCo #vi cầu rỗng #graphene oxide khử #hấp thụ sóng vi ba #tổn hao điện môi #tổn hao từ tính #đặc tính khớp trở kháng

Tài liệu tham khảo

D. Iuliis, R. Newey, B. King, R. Aitken, Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4(7), e6446 (2009) M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022) X. Zeng, X. Cheng, R. Yu et al., Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020) X. Zeng, E. Li, G. Xia et al., Silica-based ceramics toward electromagnetic microwave absorption. J. Eur. Ceram. Soc. 41(15), 7381–7403 (2021) X. Li, B. Zhang, C. Ju, X. Han, Y. Du, P. Xu, Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 115, 12350–12357 (2011) S. Yang, C. Cao, G. Li, Y. Sun, P. Huang, F. Wei, W. Song, Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Res. 8, 1339–1347 (2015) J. Wu, Z. Ye, W. Liu, Z. Liu, J. Chen, The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids. Ceram. Int. 43(16), 13146 (2017) X. Zeng, C. Zhao, Y. Yin et al., Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 193, 26–34 (2022) S. Maiti, N. Shrivastava, S. Suin, B. Khatua, Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl. Mater. Interfaces 5(11), 4712–4724 (2013) C. Méjean, L. Pometcu, R. Benzerga, A. Sharaiha, C. Le Paven-Thivet, M. Badard, P. Pouliguen, Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application. Mater. Sci. Eng. B 220, 59–65 (2015) P. Liu, Z. Yao, J. Zhou, Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram. Int. 41(10), 13409–13416 (2015) R. Shu, Y. Wu, J. Zhang, Z. Wan, X. Li, Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption. Compo. Part. B 193, 108027 (2020) M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Graphene-based ultracapacitors. Nano. Lett. 8(10), 3498–3502 (2008) D. Jung, C. Kang, J. Kim, J. Lee, Size and density of graphene domains grown with different annealing times. Bull. Korean Chem. Soc. 34(11), 3312–3316 (2013) Y. Zhang, Y. Tan, H. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005) C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008) A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008) L. Wang, J. Zhang, M. Wang, R. Che, Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. J. Mater. Chem. C 7(36), 11167–11176 (2019) Z. Du, X. Chen, Y. Zhang, X. Que, P. Liu, X. Zhang, H. Ma, M. Zhai, One-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorption. Materials 13(14), 3065 (2020) Y. Bai, G. Shi, J. Gao, F. Shi, Synthesis, crystal structure of a iron-manganese bimetal MOF and its graphene composites with enhanced microwave absorption properties. J. Phys. Chem. Sol. 148, 109657 (2020) J. Xiang, X. Zhang, Q. Ye, J. Li, X. Shen, Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater. Res. Bull. 60, 589–595 (2014) S. Li, Y. Huang, N. Zhang, M. Zeng, P. Liu, Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J. Alloy. Compd. 774, 532–539 (2018) B. Liang, S. Wang, D. Kuang, L. Hou, B. Yu, L. Lin, L. Deng, H. Huang, J. He, Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles. Nanotechnology 29(8), 085604 (2018) H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part. B 167, 690–699 (2019) Z. Wu, H.W. Cheng, C. Jin et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022) I. Shanenkov, A. Sivkov, A. Ivashutenko, V. Zhuravlev, Q. Guo, L. Li, G. Li, G. Wei, W. Han, Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 19(30), 19975 (2017) Q. Zeng, X. Xiong, P. Chen, Q. Yu, Q. Wang, R. Wang, H. Chu, Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance. J. Mater. Chem. C 4, 10518–10528 (2016) D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9(51), 44704–44714 (2017) J. Yan, Y. Huang, P. Liu, C. Wei, Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption. J. Mater. Sci. Mater. Electron. 28, 3159–3167 (2017) A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, A. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006) X. Ding, Y. Huang, J. Wang, H. Wu, P. Liu, Excellent electromagnetic wave absorption property of quaternary composites consisting of reduced graphene oxide, polyaniline and FeNi3@SiO2 nanoparticles. Appl. Surf. Sci. 357(Part A), 908–914 (2015) B. Zhao, Q. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, Yolk–shell Ni@SnO2 composites with a designable interspace To improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 8(42), 28917–28925 (2016) D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong, J. Wang, Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301–312 (2019) K. Zhang, X. Gao, Q. Zhang, T. Li, H. Chen, X. Chen, Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J. Alloys. Compd. 721, 268–275 (2017) Y. Du, J. Wang, C. Cui, X. Liu, X. Wang, X. Han, Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Metal. 160(19–20), 2191–2196 (2010) M. Cao, H. Chen, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mate. Chem. C 6(17), 4586–4602 (2018) W. Min, D. Xu, P. Chen, G. Chen, Q. Yu, H. Qiu, X. Zhu, Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 32(6), 8000–8016 (2021) Q. Jiang, H. Li, Z. Cao, H. Li, Q. Wang, Z. Jiang, Q. Kuang, Z. Xie, Synthesis and enhanced electromagnetic wave absorption performance of amorphous CoxFe1-x alloys. J. Alloys. Compd. 726, 1255–1261 (2017) W. Hummers, R. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)