Synthesis, crystal structures and physical properties of A(H2O) MoS2 (A = K, Rb, Cs)

Journal of Solid State Chemistry - Tập 279 - Trang 120937 - 2019
Yuanlv Mao1,2, Yuqiang Fang1,2, Jie Pan1, Dong Wang1, Kejun Bu1,2, Xiangli Che1, Wei Zhao1, Fuqiang Huang1,3
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3State Key Laboratory of Rare Earth Materials, Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China

Tài liệu tham khảo

Fang, 2017, Structure Re-determination and superconductivity observation of bulk 1T MoS2, Angew. Chem. Int. Ed., 130, 1246, 10.1002/ange.201710512 Guo, 2017, Observation of superconductivity in 1T′-MoS2 nanosheets, J. Mater. Chem. C, 5, 10855, 10.1039/C7TC03749J Shang, 2018, Superconductivity in the metastable 1T' and 1T''' phases of MoS2 crystals, Phys. Rev. B, 18, 184513, 10.1103/PhysRevB.98.184513 Peng, 2019, High phase purity of large-sized 1t′-MoS2 monolayers with 2D superconductivity, Adv. Mater., 31, 1900568, 10.1002/adma.201900568 Qian, 2014, Quantum spin Hall effect in two- dimensional transition metal dichalcogenides, Science, 346, 1344, 10.1126/science.1256815 Cazalilla, 2014, Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides, Phys. Rev. Lett., 113, 077201, 10.1103/PhysRevLett.113.077201 Larentis, 2018 Cai, 2015, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc., 137, 2622, 10.1021/ja5120908 Chen, 2018, Ferromagnetism of 1T'-MoS2 Nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width, J. Am. Chem. Soc., 140, 16206, 10.1021/jacs.8b09247 Xu, 2015, Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges, Nano Research, 8, 2946, 10.1007/s12274-015-0799-6 Zhao, 2018, Metastable MoS2: crystal structure, electronic band structure, synthetic approach and intriguing physical properties, Chem. Eur J., 24, 15942, 10.1002/chem.201801018 Fang, 2019, Structural determination and nonlinear optical properties of new 1t'''-type MoS2 compound, J. Am. Chem. Soc., 141, 790, 10.1021/jacs.8b12133 Lukowski, 2013, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s Yu, 2018, High phase-purity 1T′-MoS2- and 1T′-MoSe2- layered crystals, Nat. Chem., 10, 638, 10.1038/s41557-018-0035-6 Attanayake, 2018, Effect of intercalated metals on the electrocatalytic activity of 1t-MoS2 for the hydrogen evolution reaction, ACS Energy Lett, 3, 7, 10.1021/acsenergylett.7b00865 Huang, 2017, The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets, Adv. Mater. Interfaces, 4, 1700171, 10.1002/admi.201700171 Wypych, 1992, 1T-MoS2, a new metallic modification of molybdenum disulfide, Chem. Commun., 19, 1386, 10.1039/C39920001386 Whittingham, 1978, Chemistry of intercalation compounds: metal guests in chalcogenide hosts, Prog. Solid State Chem., 12, 41, 10.1016/0079-6786(78)90003-1 Schöllhorn, 1980, Reversible topotactic redox reactions of solids by electron/ion transfer, Angew. Chem. Int. Ed., 19, 983, 10.1002/anie.198009831 Lobert, 1992, Host lattice electronic properties of hydrated layered intercalation compounds studied by solid state 1H NMR, Ber. Bunsen-Ges. Phys. Chem., 96, 1564, 10.1002/bbpc.19920961109 Wypych, 1998, Scanning tunneling microscopic investigation of Kx(H2O)yMoS2, Chem. Mater., 10, 723, 10.1021/cm970402e Wypych, 1999, Electron diffraction study of intercalation compounds derived from 1t-MoS2, J. Solid State Chem., 144, 430, 10.1006/jssc.1999.8193 Bronsema, 1986, On the structure of molybdenum diselenide and disulfide, Z. Anorg. Allg. Chem., 540, 15, 10.1002/zaac.19865400904 Rocquefelte, 2003, Synergetic theoretical and experimental structure determination of nanocrystalline materials: study of LiMoS2, J. Solid State Chem., 175, 380, 10.1016/S0022-4596(03)00330-X Bensch, 1996, Crystal structure of potassium dicopper vanadium tetrasulfide, KCu2VS4. Z. Kristallogr., 211 Chen, 2018, Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation, ACS Nano, 12, 308, 10.1021/acsnano.7b06364 Schöllhorn, 1978, Ternary alkali molybdenum sulfides AxMoS2 and AxMo3S4 from alkali halide melts, J. Less Common. Met., 58, 55, 10.1016/0022-5088(78)90070-X Graf, 1977, A crystal structure investigation of the hydrated layered chalcogenides Kx(H2O)yNbS2 and Kx(H2O)yTaS2, J. Less Common. Met., 55, 213, 10.1016/0022-5088(77)90195-3 Somoano, 1971, Superconductivity in intercalated molybdenum disulfide, Phys. Rev. Lett., 27, 402, 10.1103/PhysRevLett.27.402 Ye, 2012, Superconducting dome in a gate-tuned band insulator, Science, 338, 1193, 10.1126/science.1228006 Zhang, 2015, Superconductivity in potassium-doped metallic polymorphs of MoS2, Nano Lett., 16, 629, 10.1021/acs.nanolett.5b04361 Mott, 2012, 202 Mott, 1968, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids, 1, 1, 10.1016/0022-3093(68)90002-1 Fang, 2015, Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution, ACS Appl. Mater. Interfaces, 7, 13915, 10.1021/acsami.5b02641 Li, 2016, Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts, ACS Appl. Mater. Interfaces, 8, 8536, 10.1021/acsami.6b00966 Ahmed, 2017, Inducing high coercivity in MoS2 nanosheets by transition element doping, Chem. Mater., 29, 9066, 10.1021/acs.chemmater.7b02593