Synthesis, crystal structures and physical properties of A(H2O) MoS2 (A = K, Rb, Cs)
Tài liệu tham khảo
Fang, 2017, Structure Re-determination and superconductivity observation of bulk 1T MoS2, Angew. Chem. Int. Ed., 130, 1246, 10.1002/ange.201710512
Guo, 2017, Observation of superconductivity in 1T′-MoS2 nanosheets, J. Mater. Chem. C, 5, 10855, 10.1039/C7TC03749J
Shang, 2018, Superconductivity in the metastable 1T' and 1T''' phases of MoS2 crystals, Phys. Rev. B, 18, 184513, 10.1103/PhysRevB.98.184513
Peng, 2019, High phase purity of large-sized 1t′-MoS2 monolayers with 2D superconductivity, Adv. Mater., 31, 1900568, 10.1002/adma.201900568
Qian, 2014, Quantum spin Hall effect in two- dimensional transition metal dichalcogenides, Science, 346, 1344, 10.1126/science.1256815
Cazalilla, 2014, Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides, Phys. Rev. Lett., 113, 077201, 10.1103/PhysRevLett.113.077201
Larentis, 2018
Cai, 2015, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc., 137, 2622, 10.1021/ja5120908
Chen, 2018, Ferromagnetism of 1T'-MoS2 Nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width, J. Am. Chem. Soc., 140, 16206, 10.1021/jacs.8b09247
Xu, 2015, Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges, Nano Research, 8, 2946, 10.1007/s12274-015-0799-6
Zhao, 2018, Metastable MoS2: crystal structure, electronic band structure, synthetic approach and intriguing physical properties, Chem. Eur J., 24, 15942, 10.1002/chem.201801018
Fang, 2019, Structural determination and nonlinear optical properties of new 1t'''-type MoS2 compound, J. Am. Chem. Soc., 141, 790, 10.1021/jacs.8b12133
Lukowski, 2013, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Yu, 2018, High phase-purity 1T′-MoS2- and 1T′-MoSe2- layered crystals, Nat. Chem., 10, 638, 10.1038/s41557-018-0035-6
Attanayake, 2018, Effect of intercalated metals on the electrocatalytic activity of 1t-MoS2 for the hydrogen evolution reaction, ACS Energy Lett, 3, 7, 10.1021/acsenergylett.7b00865
Huang, 2017, The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: from the study of dynamic sodiation processes of MoS2 nanosheets, Adv. Mater. Interfaces, 4, 1700171, 10.1002/admi.201700171
Wypych, 1992, 1T-MoS2, a new metallic modification of molybdenum disulfide, Chem. Commun., 19, 1386, 10.1039/C39920001386
Whittingham, 1978, Chemistry of intercalation compounds: metal guests in chalcogenide hosts, Prog. Solid State Chem., 12, 41, 10.1016/0079-6786(78)90003-1
Schöllhorn, 1980, Reversible topotactic redox reactions of solids by electron/ion transfer, Angew. Chem. Int. Ed., 19, 983, 10.1002/anie.198009831
Lobert, 1992, Host lattice electronic properties of hydrated layered intercalation compounds studied by solid state 1H NMR, Ber. Bunsen-Ges. Phys. Chem., 96, 1564, 10.1002/bbpc.19920961109
Wypych, 1998, Scanning tunneling microscopic investigation of Kx(H2O)yMoS2, Chem. Mater., 10, 723, 10.1021/cm970402e
Wypych, 1999, Electron diffraction study of intercalation compounds derived from 1t-MoS2, J. Solid State Chem., 144, 430, 10.1006/jssc.1999.8193
Bronsema, 1986, On the structure of molybdenum diselenide and disulfide, Z. Anorg. Allg. Chem., 540, 15, 10.1002/zaac.19865400904
Rocquefelte, 2003, Synergetic theoretical and experimental structure determination of nanocrystalline materials: study of LiMoS2, J. Solid State Chem., 175, 380, 10.1016/S0022-4596(03)00330-X
Bensch, 1996, Crystal structure of potassium dicopper vanadium tetrasulfide, KCu2VS4. Z. Kristallogr., 211
Chen, 2018, Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation, ACS Nano, 12, 308, 10.1021/acsnano.7b06364
Schöllhorn, 1978, Ternary alkali molybdenum sulfides AxMoS2 and AxMo3S4 from alkali halide melts, J. Less Common. Met., 58, 55, 10.1016/0022-5088(78)90070-X
Graf, 1977, A crystal structure investigation of the hydrated layered chalcogenides Kx(H2O)yNbS2 and Kx(H2O)yTaS2, J. Less Common. Met., 55, 213, 10.1016/0022-5088(77)90195-3
Somoano, 1971, Superconductivity in intercalated molybdenum disulfide, Phys. Rev. Lett., 27, 402, 10.1103/PhysRevLett.27.402
Ye, 2012, Superconducting dome in a gate-tuned band insulator, Science, 338, 1193, 10.1126/science.1228006
Zhang, 2015, Superconductivity in potassium-doped metallic polymorphs of MoS2, Nano Lett., 16, 629, 10.1021/acs.nanolett.5b04361
Mott, 2012, 202
Mott, 1968, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids, 1, 1, 10.1016/0022-3093(68)90002-1
Fang, 2015, Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution, ACS Appl. Mater. Interfaces, 7, 13915, 10.1021/acsami.5b02641
Li, 2016, Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts, ACS Appl. Mater. Interfaces, 8, 8536, 10.1021/acsami.6b00966
Ahmed, 2017, Inducing high coercivity in MoS2 nanosheets by transition element doping, Chem. Mater., 29, 9066, 10.1021/acs.chemmater.7b02593