Synthesis, characterization of SnO2 three-dimensional microbars decorated with nanostructures and electrical properties of PMMA-SnO2 nanocomposites

Surfaces and Interfaces - Tập 30 - Trang 101872 - 2022
Sindhuja Pethaperumal1, Mohanraj G T1
1Department of Chemical Engineering, BIT Mesra, Ranchi, Jharkhand 835215, India

Tài liệu tham khảo

Hemmati, 2011, Nanostructured SnO2-ZnO sensors: Highly sensitive and selective to ethanol, Sensors Actuators, B Chem., 160, 1298, 10.1016/j.snb.2011.09.065 Ponzoni, 2021, Morphological effects in sno2 chemiresistors for ethanol detection: A review in terms of central performances and outliers, Sensors (Switzerland), 21, 1 Wu, 2010, Nano SnO 2 Gas Sensors, Curr. Nanosci., 6, 525, 10.2174/157341310797574934 Li, 2020, Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds, Front. Chem., 8, 1 Periyasamy, 2020, Modulating the properties of SnO2 nanocrystals: Morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties, J. Mater. Chem. C, 8, 4604, 10.1039/C9TC06469A J. Wang, H. Li, S. Meng, S. Chen, Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances †, (2017) 27024–27032. https://doi.org/10.1039/c7ra04041e. Tan, 2021, Nanomaterial fabrication through the modification of sol–gel derived coatings, Nanomaterials, 11, 1, 10.3390/nano11010181 Wang, 2011, Shape-controlled synthesis of porous SnO2 nanostructures via morphology conserved transformation from SnC2O4 precursor approach, Nano-Micro Lett, 3, 34, 10.1007/BF03353649 Jensen, 2012, Revealing the mechanisms behind SnO 2 nanoparticle formation and growth during hydrothermal synthesis: An in situ total scattering study, J. Am. Chem. Soc., 134, 6785, 10.1021/ja300978f Inderan, 2015, Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method, Superlattices Microstruct, 88, 396, 10.1016/j.spmi.2015.09.031 Wang, 2015, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor, Sensors Actuators, B Chem., 207, 83, 10.1016/j.snb.2014.10.032 H. Bin Wu, J.S. Chen, X. Wen, D. Lou, H.H. Hng, Synthesis of SnO 2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties, (2011) 24605–24610. Gnanam, 2010, Synthesis of tin oxide nanoparticles by sol-gel process: Effect of solvents on the optical properties, J. Sol-Gel Sci. Technol., 53, 555, 10.1007/s10971-009-2131-y X. Jiaqiang, W. Ding, Q. Lipeng, Y. Weijun, P. Qingyi, Sensors and Actuators B : Chemical SnO 2 nanorods and hollow spheres : Controlled synthesis and gas sensing properties, 137 (2009) 490–495. https://doi.org/10.1016/j.snb.2009.01.011. Wang, 2013, Sensors and Actuators B : Chemical Synthesis of hierarchical SnO 2 nanostructures assembled with nanosheets and their improved gas sensing properties, Sensors Actuators B. Chem., 188, 85, 10.1016/j.snb.2013.06.076 Li, 2009, Synthesis of SnO2 nano-sheets by a template-free hydrothermal method, Mater. Lett., 63, 2085, 10.1016/j.matlet.2009.06.060 Vayssieres, 2004, Highly ordered SnO2 nanorod arrays from controlled aqueous growth, Angew. Chemie - Int. Ed., 43, 3666, 10.1002/anie.200454000 Li, 2016, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications, Sensors Actuators, B Chem., 231, 120, 10.1016/j.snb.2016.03.003 Guo, 2013, Three-dimensional SnO 2 microstructures assembled by porous nanosheets and their superior performance for gas sensing, Powder Technol, 250, 40, 10.1016/j.powtec.2013.10.002 M. Bagheri-mohagheghi, N. Shahtahmasebi, M.R. Alinejad, The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO 2 semiconducting oxide nano-particles synthesized by polymerizing – complexing sol – gel method, 403 (2008) 2431–2437. https://doi.org/10.1016/j.physb.2008.01.004. Hussien, 2020, Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials, Environ. Sci. Pollut. Res., 27, 45225, 10.1007/s11356-020-10305-1 Hussien, 2020, Multifunctional Applications of Graphene-Doped PMMA Nanocomposite Membranes for Environmental Photocatalytic, J. Inorg. Organomet. Polym. Mater., 30, 2708, 10.1007/s10904-019-01433-4 Gross, 2007, PMMA: A key macromolecular component for dielectric low-κ hybrid inorganic-organic polymer films, Eur. Polym. J., 43, 673, 10.1016/j.eurpolymj.2006.12.012 Hu, 2018, SnO2/Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li-S Batteries, ACS Appl. Mater. Interfaces, 10, 18665, 10.1021/acsami.8b03255 Kadhim, 2016, Hydrogen gas sensor based on nanocrystalline SnO2 Thin Film grown on bare Si substrates, Nano-Micro Lett, 8, 20, 10.1007/s40820-015-0057-1 L.X. Li, F. Li, The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes, Xinxing Tan Cailiao/New Carbon Mater. 26 (2011) 224–228. https://doi.org/10.1016/S1872-5805(11)60078-4. Bhattacharjee, 2015, A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase, J. Colloid Interface Sci., 448, 130, 10.1016/j.jcis.2015.01.083 Lee, 2004, Photoluminescence in quantum-confined SnO2 nanocrystals : Evidence of free exciton decay, Evidence of free exciton decay, 1745, 1 Inderan, 2015, Superlattices Microstruct Azam, 2013, Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature, Int. J. Nanomedicine, 8, 3875, 10.2147/IJN.S51206 Mohamed, 2011, SnO2 dendrites-nanowires for optoelectronic and gas sensing applications, J. Alloys Compd., 510, 119, 10.1016/j.jallcom.2011.09.006 Mohanraj, 2007, Measurement of AC conductivity and dielectric properties of flexible conductive styrene–butadiene rubber-carbon black composites, J. Appl. Polym. Sci., 104, 986, 10.1002/app.25561