Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds

Journal of inclusion phenomena - Tập 102 - Trang 763-780 - 2022
Serhat Koçoğlu1,2, Zeliha Hayvalı2, Hatice Ogutcu3, Orhan Atakol2
1Food Processing Department, Kahramankazan Vocational School, Başkent University, Ankara, Turkey
2Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
3Department of Field Crops, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey

Tóm tắt

Nitropyridine substituted double-armed benzo 15-crown-5 compounds (1–4) were synthesized by the reactions of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with hydroxypyridine derivatives. Na+ and K+ complexes (1a–4a, 1b–4b) of crown ether compounds (1–4) were prepared with sodium picrate and potassium picrate, respectively. Transition metal complexes (1c–4c) of the synthesized ligands (1–4) were prepared from Ag+ cation. In addition, nitro compounds (1, 2 and 4) were reduced by using Pd/C and hydrazine hydrate and new amine compounds (5, 6 and 8) were obtained. The structures of new double-armed crown ether compounds (2–4), their metal complexes (1a–4a, 1b–4b, 2c–4c) and amine compounds (5, 6 and 8) were elucidated by FTIR, HRMS, 1H–NMR, 13C–NMR spectroscopic methods. The thermal behaviors of these nitro group containing ligands (1–4) were compared with the resulting silver complexes (1c–4c) and amine compounds (5, 6 and 8). All synthesized compounds were examined for antibacterial activity against pathogenic strains Listeria monocytogenes, Salmonella typhi H, Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Escherichia coli, Klebsiella pneumonia, Proteus vulgaris, Serratia marcescens, Shigella dysenteria and antifungal activity against Candida albicans.

Tài liệu tham khảo

Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967). https://doi.org/10.1021/ja01002a035 Pedersen, C.J.: The discovery of crown ethers. Science 241, 536–540 (1988). https://doi.org/10.1126/science.241.4865.536 Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004). https://doi.org/10.1021/cr020080k Li, J., Yim, D., Jang, W.D., Yoon, J.: Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017). https://doi.org/10.1039/C6CS00619A Zhang, G., Zhang, D., Zhou, Y., Zhu, D.: A new tetrathiafulvalene-anthracence dyad fusion with the crown ether group: fluorescence modulation with Na+ and C60, mimicking the performance of an “AND” logic gate. J. Org. Chem. 71, 3970–3972 (2006). https://doi.org/10.1021/jo052494u Gawley, R.E., Mao, H., Haque, M.M., Thorne, J.B., Pharr, J.S.: Visible fluorescence chemosensor for saxitoxin. J. Org. Chem. 72, 2187–2191 (2007). https://doi.org/10.1021/jo062506r Pond, S.J.K., Tsutsumi, O., Rumi, M., Kwon, O., Zojer, E., Brédas, J.L., Marder, S.R., Perry, J.W.: Metal-ion sensing fluorophores with large two-photon absorption cross sections: Aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. J. Am. Chem. Soc. 126, 9291–9306 (2004). https://doi.org/10.1021/ja049013t Tso, W.W., Fung, W.P.: Correlation between the antibacterial activity and alkali metal ion transport efficiency of crown ether. Inorg. Chim. Acta 55, 129–134 (1981). https://doi.org/10.1016/S0020-1693(00)90794-1 Marjanović, M., Kralj, M., Supak, F., Frkanec, L., Piantanida, I., Šmuc, T., Tušek-Božić, L.: Antitumor potential of crown ethers: structure-activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores. J. Med. Chem. 50, 1007–1018 (2007). https://doi.org/10.1021/jm061162u Altaf, M., Stoeckli-Evans, H., Cuin, A., Sato, D., Pavan, F., Leite, C., Ahmad, S., Bouakka, M., Mimouni, M., Khardli, F., Hadda, T.: Synthesis, crystal structures, antimicrobial, antifungal andantituberculosis activities of mixed ligand silver(I) complexes. Polyhedron 138, 138–147 (2013). https://doi.org/10.1016/j.poly.2013.06.021 Koçoğlu, S., Hayvali, Z., Ogutcu, H.: A polydentate ligand based on 2,2’-dipyridylamine unit linked benzo-15-crown-5; alkali and transition metal complexes; photoresponsive ligand; antimicrobial evaluation against pathogenic microorganisms. Trans. Met. Chem. 46, 509–522 (2021). https://doi.org/10.1007/s11243-021-00469-1 Hayvalı, Z., Guler, H., Ogutcu, H., Sarı, N.: Novel bis-crown ethers and their sodium complexes as antimicrobial agent: synthesis and spectroscopic characterizations. Med. Chem. Res. 23, 652–3661 (2014). https://doi.org/10.1007/s00044-014-0937-9 Ackermann, L., Diers, E., Manvar, A.: Ruthenium-catalyzed C−H bond arylations of arenes bearing removable directing groups via six-Mmembered ruthenacycles. Org. Lett. 14, 1154–1157 (2012). https://doi.org/10.1021/ol3000876 Liang, Y.F., Li, X., Wang, X., Yan, Y., Feng, P., Jiao, N.: Aerobic oxidation of PdII to PdIV by active radical reactants: direct C−H nitration and acylation of arenes via oxygenation process with molecular oxygen. ACS Catal. 5, 1956–1963 (2015). https://doi.org/10.1021/cs502126n Lou, S.J., Chen, Q., Wang, Y.F., Xu, D.Q., Du, X.H., He, J.Q., Mao, Y.J., Xu, Z.Y.: Selective C-H bond fluorination of phenols with a removable directing group: late-stage fluorination of 2-phenoxyl nicotinate derivatives. ACS Catal. 5, 2846–2849 (2015). https://doi.org/10.1021/acscatal.5b00306 Dai, W.C., Yang, B., Xu, S.H., Wang, Z.X.: Nickel-catalyzed cross-coupling of aryl 2-pyridyl ethers with organozinc reagents: removal of the directing group via cleavage of the carbon-oxygen bonds. J. Org. Chem. 86, 2235–2243 (2021). https://doi.org/10.1021/acs.joc.0c02389 Fleming, G.J.: Thermal analysis of nitro-substituted epoxide polymers. J. App. Polym. Sci. 13, 2579–2592 (1969). https://doi.org/10.1002/app.1969.070131206 Yigiter, A.O., Atakol, M.K., Aksu, M.L., Atakol, O.: Thermal characterization and theoretical and experimental comparison of picryl chloride derivatives of heterocyclic energetic compounds. J. Therm. Anal. Calorim. 127, 2199–2213 (2017). https://doi.org/10.1007/s10973-016-5766-2 Bernt, S., Guillerm, V., Serre, C., Stock, N.: Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem. Commun. 47, 2838–2840 (2011). https://doi.org/10.1039/C0CC04526H Atakol, A., Svoboda, I., Dal, H., Atakol, O., Nazır, H.: New energetic silver(I) complexes with Nnn type pyrazolylpyridine ligands and oxidizing anions. J. Mol. Struct. 1210, 128001 (2020). https://doi.org/10.1016/j.molstruc.2020.128001 Bilgin, A., Ertem, B., Dinc Agın, P., Gok, Y., Karslıoglu, S.: Synthesis, characterization and extraction studies of a new vic-dioxime and its complexes containing bis(diazacrown ether) moieties. Polyhedron 25, 3165–3172 (2006). https://doi.org/10.1016/j.poly.2006.05.023 Koçoğlu, S., Ogutcu, H., Hayvalı, Z.: Photophysical and antimicrobial properties of new double-armed benzo-15-crown-5 ligands and complexes. Res. Chem. Intermed. 45, 2403–2427 (2019). https://doi.org/10.1007/s11164-019-03741-3 Calverley, M.J., Dale, J.: 1,4,7-Trioxa-10-azacyclododecane and some N-substituted derivatives; Synthesis and cation complexing. Acta Chem. Scand. B. 36, 241–247 (1982). https://doi.org/10.3891/acta.chem.scand.36b-0241 Winkler, B., Mau, A.W.H., Dai, L.: Crown ether substituted phenylenevinylene oligomers: synthesis and electroluminescent properties. Phys. Chem. Chem. Phys. 2, 291–295 (2000). https://doi.org/10.1039/A907547J Sarı, N., Şahin, S.Ç., Öğütcü, H., Dede, Y., Yalçın, S., Altundas, A., Doğanay, K.: Ni(II)-tetrahedral complexes: characterization, antimicrobial properties, theoretical studies and a new family of charge-transfer transitions. Spectrochim. Acta A. 106, 60–67 (2013). https://doi.org/10.1016/j.saa.2012.12.078 Rubab, S., Bahadur, S., Hanif, U., Durrani, A.I., Sadiqa, A., Shafique, S., Zafar, U., Shuaib, M., Urooj, Z., Nizamani, M.M., Iqbal, S.: Phytochemical and antimicrobial investigation of methanolic extract/ fraction of Ocimum basilicum L. Biocatal. Agric. Biotechnol. 31, 101894 (2021). https://doi.org/10.1016/j.bcab.2020.101894 Nartop, D., Sarı, N., Altundaş, A., Öğütcü, H.: Synthesis, characterization, and antimicrobial properties of new polystyrene-bound Schiff bases and their some complexes. J. Appl. Polym. Sci. 125, 1796–1803 (2012). https://doi.org/10.1002/app.36270 Çınarlı, M., Yüksektepe Ataol, Ç., Bati, H., Güntepe, F., Ögütçü, H., Büyükgüngör, O.: Synthesis, structural characterization, Hirshfeld analyses, and biological activity studies of Ni(II) and Zn(II) complexes containing the sulfonohydrazone group. Inorg. Chim. Acta 484, 87–94 (2019). https://doi.org/10.1016/j.ica.2018.09.027 Barboiu, M., Meffre, A., Legrand, Y.M., Petit, E., Marin, L., Pinteala, M., Lee, A.V.D.: Frustrated ion-pair binding by heteroditopic macrocyclic receptors. Supramol. Chem. 26, 223–228 (2014). https://doi.org/10.1080/10610278.2013.852196 Poonia, N.S., Bagdi, P., Sidhu, K.S.: Structural aspects of crown complexes with alkali and alkaline earth cations. Benzo-15-crown-5 as a discriminating macrocycle. J. Incl. Phenom. 4, 43–54 (1986). https://doi.org/10.1007/BF00662080 Keller, B.O., Sui, J., Young, A.B., Whittal, R.M.: Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta 627, 71–81 (2008). https://doi.org/10.1016/j.aca.2008.04.043 Tong, H., Bell, D., Tabei, K.: Siegel, MM: Automated data massaging, interpretation, and e-mailing modules for high throughput open access mass spectrometry. J. Am. Soc. Mass. Spectrom. 10, 1174–1187 (1999). https://doi.org/10.1016/S1044-0305(99)00090-2 Ghildiyal, N., nee Pant, G.J., Rawat, M.S.M., Singh, K.: Spectral investigation of the effect of anion on the stability of non covalent assemblies of 2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13-benzopentaoxacyclopentadecine (benzo-15-crown-5) with sodium halides. Spectrochim. Acta A. 171, 507–514 (2017). https://doi.org/10.1016/j.saa.2016.07.044 Liu, Y.: Han, JR, Zhang, HY: Assembly behavior and binding ability of double-armed benzo-15-crown-5 with the potassium ion. Supramol. Chem. 16, 247–254 (2004). https://doi.org/10.1080/10610270410001663796 Şahin, D., Süzen, Y., Hayvalı, Z.: Double-armed benzo-15-crown-5 ligands and complexes and single crystal structure determination. Heteroatom Chem. 25, 43–54 (2014). https://doi.org/10.1002/hc.21134 Şahin, D., Koçoğlu, S., Şener, O., Şenol, C., Dal, H., Hokelek, T., Hayvalı, Z.: New NO donor ligands and complexes containing furfuryl or crown ether moiety: Syntheses, crystal structures and tautomerism in ortho-hydroxy substituted compounds as studied by UV-vis spectrophotometry. J. Mol. Struct. 1102, 302–313 (2015). https://doi.org/10.1016/j.molstruc.2015.09.004 Öğütçü, H., Kurnaz Yetim, N., Hasanoglu Özkan, E., Eren, O., Kaya, G., Sarı, N., Dişli, A.: Nanospheres caped Pt(II) and Pt (IV): synthesis and evaluation as antimicrobial and antifungal agent. P. J. Chem. Techn. 19, 74–80 (2017). https://doi.org/10.1515/pjct-2017-0011 Çiçek, İ, Tunç, T., Ogutcu, H., Abdurrahmanoglu, S., Günel, A., Demirel, N.: Synthesis of novel chiral aminoalcohol and benzimidazole hybrids and investigation of their antimicrobial activities. Bioorg. Chem. 5, 4650–4654 (2020). https://doi.org/10.1002/slct.202000355 Gul, D.S., Ogutcu, H., Hayvalı, Z.: Investigation of photophysical behavior and antimicrobial activity of novel benzo-15-crown-5 substituted coumarin and chromone derivatives. J. Mol. Struct. 1204, 127569 (2020). https://doi.org/10.1016/j.molstruc.2019.127569 Nartop, D., Hasanoğlu Özkan, E., Gündem, M., Çeker, S., Ağar, G., Öğütcü, H., Sarı, N.: Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol. J. Mol. Struct. 1195, 877–882 (2019). https://doi.org/10.1016/j.molstruc.2019.06.042 Altundas, A., Erdogan, Y., Ögütcü, H., Kizil, H.E., Agar, G.: Synthesis and in-vitro antimicrobial and anti-mutagenic activities of some novel 2-(2-hydroxybenzylideneamino)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carbonitrile derivatives. Fresen. Environ. Bull. 25, 5411–5418 (2016) Nartop, D., Demirel, B., Güleç, M., Hasanoğlu Özkan, E., Kurnaz Yetim, N., Sarı, N., Çeker, S., Öğütcü, H., Ağar, G.: Synthesis, enzyme immobilization, antimutagenic activity and antimicrobial evulation against pathogenic microorganisms. J. Biochem. Mol. Tox. 34, e22432 (2020). https://doi.org/10.1002/jbt.22432 Afzal, J., Ullah, N., Hussain, Z., Rukh, S., Ayaz, M., Akbar, A., Zaman, A.: Phytochemical an analysis and antibacterial potential of leaf extract of Bauhinia Linn.: An ethnomedicinal plant. Matrix Science Pharma 1, 17–19 (2017). https://doi.org/10.26480/msp.02.2017.17.19 Atakol, O., Fuess, H., Kurtaran, R., Akay, A., Arici, C., Ergun, Ü.: Emregül, KC: Three new dinuclear silver(I) complexes derived from pyrazolyl type ligands. J. Therm. Anal. Calorim. 90, 517–523 (2007). https://doi.org/10.1007/s10973-006-7689-9 Klapötke, T.M.: Chemistry of high-energy materials, 3rd edn. De Gruyter, Berlin (2015) Lizarraga, E., Zabaleta, C.: Palop, JA: thermal stability and decomposition of pharmaceutical compounds. J. Therm. Anal. Calorim. 89, 783–792 (2007). https://doi.org/10.1007/s10973-006-7746-4 Apreutesei, D., Lisa, G., Hurduc, N., Scutaru, D.: Thermal behavior of some cholesteric esters. J. Therm. Anal. Calorim. 83, 335–340 (2006). https://doi.org/10.1007/s10973-005-6522-1