Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic liquids based on them
Tóm tắt
Core–shell magnetosensitive nanocomposites (NC) based on single-domain magnetite (Fe3O4, core), with a shell consisting of hydroxyapatite (HA) and cytotoxic drug doxorubicin (DOX) layers have been synthesized. The processes of DOX adsorption on Fe3O4/HA surface from physiologic solution have been studied. DOX release into saline was found to decrease with growing of its quantity on NC surface. It has been determined that cytotoxic influence and antiproliferative activity of Fe3O4/HA/DOX NC with respect to Saccharomyces cerevisiae cells are characteristic for interaction of these cells with a free form of doxorubicin. Magnetic liquids containing Fe3O4/HA/DOX NC stabilized by sodium oleate and polyethylene glycol were prepared and investigated. It is shown that using the ensemble of Fe3O4 carriers as a superparamagnetic probe, the Langevin’s paramagnetism theory, and the values of density of nanocomposite constituents, one can evaluate the size parameters of their shell, which has been corroborated by independent measurements of specific surface area of nanostructures and kinetic stability of the corresponding magnetic liquids. The obtained results may be useful for development and optimization of novel forms of magnetocarried medical remedies of targeted delivery and adsorbents based on nanocomposites of superparamagnetic core–shell type with multilevel nanoarchitecture, as well as for determination and control of the size parameters of its components.
Tài liệu tham khảo
Roco M.C., Williams, R.S., Alivisatos, P.: Vision for Nanotechnology R&D in the Next Decade. Kluwer Academic, Dordrecht. http://www.wtec.org/loyola/nano/IWGN.Research.Directions/IWGN_rd.pdf (2002)
Levy, L., Sahoo, Y., Kim, K.-S., Bergey, J.E., Prasad, P.: Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 14, 3715–3721. http://pubs.acs.org/doi/abs/10.1021/cm0203013 (2002)
Gorbyk, P.P., Dubrovin, I.V., Petranovska, A.L., Abramov, M.V., Usov, D.G., Storozhuk, L.P., Turanska, S.P., Turelyk, M.P., Chekhun, V.F., Lukyanova, N.Y., Shpak, A.P., Korduban, O.M.: Chemical construction of polyfunctional nanocomposites and nanorobots for medico-biological applications. In: Shpak, A.P., Gorbyk, P.P. (eds.) Nanomaterials and Supramolecular Structures. Physics, Chemistry, and Applications, pp. 63–78. Naukova dumka, Springer, Kiev. http://www.springer.com/us/book/9789048123087(2009)
Gorbyk, P.P., Chekhun, V.F.: Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Funct. Mater. 19(2), 145–156. http://functmaterials.org.ua/contents/19-2/fm192-01.pdf (2012)
Gorbyk, P.P., Lerman, L.B., Petranovska, A.L., Turanska, S.P.: Magnetosensitive nanocomposites with functions of medico-biological nanorobots: synthesis and properties. In: Adorno, D.P., Pokutnyi, S. (eds.) Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, pp. 161–198. Nova Science Publishers, N. Y. www.novapublishers.com/catalog/product_info.php?products_id=51113 (2014)
Huang, C., Zhou, Y., Tang, Z., Guo, X., Qian, Z., Zhou, S.: Synthesis of multifunctional Fe3O4 core/hydroxyapatite shell nanocomposites by biomineralization. Dalton Trans. 40(18), 5026–5031. http://www.ncbi.nlm.nih.gov/pubmed/21455509 (2011)
Iwasaki, T.: Mechanochemical synthesis of magnetite/hydroxyapatite nanocomposites for hyperthermia. In: Mastai, Y. (ed.) Materials Science—Advanced Topics, pp. 175–194. InTech (2013). doi:10.5772/54344
Gopi, D., Ansari, M.T., Shinyjoy, E., Kavitha, L.: Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 87, 245–250. http://www.sciencedirect.com/science/article/pii/S1386142511010420 (2012)
Mir, A., Mallik, D., Bhattacharyya, S., Mahata, D., Sinha, A., Nayar, S.: Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. J. Mater. Sci: Mater. Med. 21, 2365–2369. http://www.researchgate.net/publication/44633635_Aqueous_ferrofluids_as_templates_for_magnetic_hydroxyapatite_nanocomposites (2010)
Feng, C., Chao, L., Ying-Jie, Z., Xin-Yu, Z., Bing-Qiang, L., Jin, W.: Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe3O4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release. Biomater. Sci. 1, 1074–1081. http://pubs.rsc.org/en/content/articlelanding/2013/bm/c3bm60086f/unauth#!divAbstract (2013)
Petranovska, A.L., Abramov, N.V., Turanska, S.P., Gorbyk, P.P., Kaminskiy, A.N., Kusyak, N.V.: Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 5, 275–285. http://link.springer.com/article/10.1007/s40097-015-0159-9?wt_mc=alerts.TOCjournals (2015)
Petranovska, A.L., Turelik, M.P., Pylypchuk, I.V., Gorbyk, P.P., Korduban, A.M., Ivasishin, O.M.: Formirovaniye biomimeticheskogo gidroksiapatita na poverkhnosti titana. Metallofizika i Noveishyye Tekhnologii. 35(11), 1567–1584. http://mfint.imp.kiev.ua/ru/toc/v35/i11.html (2013)
Pylypchuk, I.V., Petranovska, A.L., Turelyk, M.P., Gorbyk, P.P.: Formation of biomimetic hydroxyapatite coating on titanium plates. Mat. Science (Med.) 20(3), 328–332 (2014). doi:10.5755/j01.ms.20.3.4974
Pylypchuk, I.V., Petranovska, A.L., Gorbyk, P.P., Korduban, A.M., Markovsky, P.E., Ivasishin, O.M.: Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4 V and Ti-Zr-Nb alloys. Nanoscale Res. Lett. 10, 338. http://www.nanoscalereslett.com/content/10/1/338/abstract (2015)
Davaran, S., Alimirzalu, S., Nejati-Koshki, K., Nasrabadi, H.T., Akbarzadeh, A., Khandaghi, A.A., Abbasian, M., Alimohammadi, S.: Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly(N-isopropylacrylamide) for anti-cancer drug delivery. Asian Pac. J. Cancer Prev. 15(1), 49–54. http://www.apjcpcontrol.org/paper_file/issue_abs/Volume15_No1/49-54%208.14%20Soodabeh%20Davaran.pdf (2014)
Anirudhan, T.S., Sandeep, S.: Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J. Mater. Chem. 22, 12888–12899. http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/C2JM31794J#!divAbstract (2012)
Sadighian, S., Hosseini-Monfared, H., Rostamizadeh, K., Hamidi, M.: pH-Triggered magnetic-chitosan Nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv. Pharm. Bull. 5(1), 115–120. http://journals.tbzmed.ac.ir/APB/Manuscript/APB-5-115.pdf (2015)
Rozentsveyg, R.: Ferrogidrodinamika. Mir, Moskva. http://www.twirpx.com/file/179455/ (1989)
Araújo-Neto, R.P., Silva-Freitas, E.L., Carvalho, J.F., Pontes, T.R.F., Silva, K.L., Damasceno, I.H.M., Egito, E.S.T., Dantas, A.L., Morales, M.A., Carriço, A.S.: Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 364, 72–79. http://www.sciencedirect.com/science/journal/03048853/364 (2014)
Abramov, N.V., Gorbyk, P.P.: Svoystva ansambley nanochastits magnetita i magnitnykh zhydkostey dlya primeneniy v onkoterapii. Poverkhnost’. 4(19), 246 http://surfacezbir.com.ua/images/Arhiv/N19/3/3-8Abramov246-265.pdf (2012)
Borisenko, N.V., Bogatyrev, V.M., Dubrovin, I.V., Abramov, N.V., Gayevaya, M.V., Gorbyk, P.P.: Sintez i svoistva magnitochuvstvitel’nykh nanokompositov na osnove oksidov zheleza i kremniya. In: Shpak, A.P., Gorbyk, P.P. (eds.) Fiziko-khimiya Nanomaterialov i Supramolekulyarnykh Struktur. 1, pp. 394–406. Naukova dumka, Kiev. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/ (2007)
Turov, V.V., Gorbik, S.P.: Opredeleniye sil adgezii na mezhfaznoy granize kletka/voda iz dannykh 1H YMR spektroskopii. Ukrainskiy Khimicheskiy Zhurnal. 69(6), 80–85 (2003)
Turov, V.V., Gorbik, S.P., Chuiko, A.A.: Vliyaniye dispersnogo kremnezema na svyazannuyu vodu v zamorozhennykh kletochnykh suspenziyakh. Problemy Kriobiologii. 3, 16–23 (2002)
Saenko, Y.V., Shutov, A.M., Rastorgueva, E.V.: Doxorubicin i menadion vyzyvayut zaderzhku kletochnoy proliferacii Saccharomyces cerevisiae s pomoshchyu razlichnykh mekhanizmov. Citologiya. 52(5), 407–411. http://www.tsitologiya.cytspb.rssi.ru/52_5/saenko.pdf (2010)
Huang, R.Y., Kowalski, D., Minderman, H., Gandhi, N., Johnson, E.S.: Small ubiquitin-related modifier pathway is a major determinant of doxorubicin cytotoxicity in Saccharomyces cerevisiae. Cancer Res. 67(2), 765–772. http://www.pubfacts.com/detail/17234788/Small-ubiquitin-related-modifier-pathway-is-a-major-determinant-of-doxorubicin-cytotoxicity-in-Sacch (2007)
Patel, S., Sprung, A.U., Keller, B.A., Heaton, V.J., Fisher, L.M.: Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity. Mol. Pharmacol. 52(4), 658–666. http://www.ncbi.nlm.nih.gov/pubmed/9380029 (1997)
Tacar, O., Sriamornsak, P., Dass, C.R.: Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65(2): 157–170 (2013). doi:10.1111/j.2042-7158.2012.01567.x
Biswanath, K., Debasree, G., Mithlesh, K.S., Partha, S.S., Vamsi, K.B., Nirmalendu, D., Debabrata, B.: Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceram. Int. 39(8), 9557–9566. http://www.sciencedirect.com/science/article/pii/S0272884213005890 (2013)
Shpak, A.P., Chekhun, V.F., Gorbyk, P.P., Turov, V.V.: Nanomaterialy i Nanokompozity v Medizyne, Biologii, Ekologii. Naukova dumka, Кiev. http://www.irbis-nbuv.gov.ua/ (2011)
Babyeva, I.P., Chernov, I.Y.: Biologiya Drozhzhey. T-vo nauch. izd. KMK, Moskva. http://ashipunov.info/shipunov/school/books/babjeva2004_biologija_drozhzhej.pdf (2004)
Sun, S., Zeng, H., Robinson, D.B.: Monodispersed MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 73–279. http://www.researchgate.net/publication/8931334_Monodisperse_MFe2O4_(M__Fe_Co_Mn)_nanoparticles (2004)
Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgues, A., Portier, J., Pollert, E., Duguet, E.: Magnetic nanoparticle design for medical applications. Prog. Sol. St. Chem. 34, 237–247. http://science.report/author/s-mornet/ (2006)
Abramov, N.V.: Magnitnyye zhidkosti na osnove doxorubicina dlya primeneniy v onkoterapii. Poverkhnost’. 6, 241–258. http://surfacezbir.com.ua/images/Arhiv/N21/20.3.7.pdf (2014)
Banerjee, S.K., Moskowitz, B.M.: Ferrimagnetic properties of magnetite. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (eds.) Magnetite Biomineralization and Magnetoreception in Organisms (1st Edition). A New Biomagnetism (Topics in Geobiology). 5, pp. 17–41. Plenum Press, New York. http://link.springer.com/chapter/10.1007/978-1-4613-0313-8_2 (1985)
Kim, T., Shima, M.: Reduced magnetization in magnetic oxide nanoparticles. J. Appl. Phys. 101, 09M516. http://connection.ebscohost.com/c/articles/25114951/reduced-magnetization-magnetic-oxide-nanoparticles (2007)
Sahoo, P.: Probability and Mathematical Statistics. University of Louisville, Louisville. http://www.math.louisville.edu/~pksaho01/teaching/Math662TB-09S.pdf (2008)
Frolov, Y.G.: Kurs Kolloidnoy Khimii. Khimiya, Moskva http://t-library.org.ua/showBook.php?id=3276 (1989)
Chen, D.-X., Sun, N., Gu, H.-C.: Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging. J. App. Phys. 106(6), 063906–063906-9 http://dx.doi.org/10.1063/1.3211307 (2009)
Pokutnyi, S.I.: Theory of excitons and quasimolecules formed from spatially separated electrons and holes in quasi-zero-dimensional semiconductor nanosystems. In: Adorno, D.P., Pokutnyi, S.I. (eds.) Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications, pp. 73–90. Nova Science Publishers, New York. http://www.amazon.com/Advances-Semiconductor-Research-Technological-Applications/dp/1633217558 (2014)
Gorbyk, P.P., Lerman, L.B., Petranovska, A.L., Turanska, S.P., Pylypchuk, I.V.: Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: synthesis, properties, and application. In: Grumezescu, A. (ed.) Fabrication and Self-assembly of Nanobiomaterials, Applications of Nanobiomaterials, pp. 289–334. William Andrew, Elsevier. http://store.elsevier.com/product.jsp? (2016)