Synthesis and photoluminescence studies of Na3−3xLnxSbO (PO4)2 (Ln = Eu, Sm and Tb, and 0 ≤ x ≤ 0.1 mol%) phosphors for white light-emitting diodes
Tóm tắt
In this work, we report the conventional solid-state synthesis, characterization and emission spectral properties of Na3−3xLnxSbO(PO4)2 (Ln = Eu, Sm and Tb, 0 ≤ x ≤ 0.1 mol%) phosphors. The powder X-ray diffraction (XRD) pattern of prepared phosphors consists of single-phase orthorhombic structure with space group P212121. The scanning electronic microscopy (SEM) images show irregular shaped particles with considerable agglomeration for all phosphors. Fourier transform infrared (FTIR) spectroscopy, energy-dispersive spectroscopy (EDS), photoluminescence (PL) emission and excitation spectra, decay curves were analysed in detail. The x = 0.075 mol% Eu3+-doped samples show highest emission intensity with a strong peak located at λem = 592 nm corresponding to the transition of 5D0 → 7F1 when excited at 256 nm. The Sm3+-doped phosphor gave intense emission peak at 597 nm corresponding to transition of 4G5/2 → 6H7/2 for x = 0.075 mol% when excited at 402 nm, while for Tb3+ substituted phosphor gave intense peak at 544 nm related to transition of 5D4 → 7F5 for x = 0.05 mol% when excited at 371 nm. The CIE chromaticity coordinate diagram confirms that the synthesized phosphors are emitting colours near to the National Television Slandered Committee (NTSC) red, orange and green for Eu3+, Sm3+ and Tb3+ samples, respectively, which may be used in the lamps and display devices.
Tài liệu tham khảo
C.C. Lin, Z.R. Xiao, G.Y. Guo, T.S. Chan, R.S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: collocated characteristic analysis and theoretical calculations. J. Am. Chem. Soc. 132, 3020–3028 (2010). https://doi.org/10.1021/ja9092456
M. Hirayama, N. Sonoyama, A. Yamada, R. Kanno, Structural investigation of Eu2+ emission from alkaline earth zirconium phosphate. J. Solid State Chem. 182, 730–735 (2009). https://doi.org/10.1016/j.jssc.2008.12.015
L. Tian, B.Y. Yu, C.H. Pyun, H.L. Park, S.I. Mho, New red phosphors BaZr (BO3)2 and SrAl2B2O7 doped with Eu3+ for PDP applications. Solid State Commun. 192, 43–46 (2004). https://doi.org/10.1016/j.ssc.2003.09.012
C.M. Ouyang, S. Ma, R. Yang, X.M. Zhou, X.Z. Zhou, Y.X. Li, LiZnPO4: Tb3+, Ce3+ green phosphors with high efficiency. J. Rare Earths 30, 637–640 (2012). https://doi.org/10.1016/S1002-0721(12)60104-5
B.E. Scheetz, D.K. Agrawal, E. Breva, L.R. Roy, Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manag. 14, 489–505 (1994). https://doi.org/10.1016/0956-053X(94)90133-3
D. Goyomard, C. Pagnoux, J.J.Z. Letho, A. Verbaere, Y. Piffard, Preparation and crystal structure of Na3SbO (PO4)2. J. Solid State Chem. 90, 367–372 (1991). https://doi.org/10.1016/0022-4596(91)90154-A
Y. Piffard, A. Lachgar, M. Tournoux, Crystal structure of KSb2PO8. Mater. Res. Bull. 20, 715–721 (1985). https://doi.org/10.1016/0025-5408(85)90150-3
Y. Piffard, A. Lachgar, M. Tournoux, A potassium phosphatoantimonate with a three-dimensional framework: K5Sb5P2O20. Mater. Res. Bull. 21, 1231 (1986). https://doi.org/10.1016/0025-5408(86)90052-8
A. Lachgar, S.D. Cournat, Y. Piffard, Preparation and crystal structure of K2SbPO6. Solid State Chem. 63, 409–413 (1986). https://doi.org/10.1016/0022-4596(86)90198-2
Y. Piffard, S. Oyetola, S. Courant, A. Lachgar, Crystal structure of KSbP2O8. J. Solid State Chem. 60, 209–213 (1985). https://doi.org/10.1016/0022-4596(85)90114-8
Y. Piffard, A. Lachgar, M. Tournoux, Structure crystalline du phosphate antimonate K3Sb3P2O14. J. Solid State Chem. 58, 253–256 (1985). https://doi.org/10.1016/00224596(85)90242-7
V. Radha, K. Ramaswamy, N.R. Munirathnam, M. Vithal, Effect of cation/anion co-doping on the photocatalytic performance of Na3SbO(PO4)2. Z. Anorg. Allg. Chem. (2015). https://doi.org/10.1002/zaac.201400557
H.-W. Tseng, W.-C. Tzou, S. Wei, P.-Y. Lin, C.-F. Yang, Effects of synthesis temperature and Eu2O3 concentration on the crystalline phases and photoluminescence properties of SrAl2O4 phosphors. J. Mater. Res. Technol. 9, 14051–14060 (2020). https://doi.org/10.1016/j.jmrt.2020.10.003
Yi. Zhang, Wu. Li, M. Ji, B. Wang, Y. Kong, Xu. Jingjun, Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor. Opt. Mater. Express. 2, 92–102 (2012). https://doi.org/10.1364/OME.2.000092
K.N. Chen, C.M. Hsu, J. Liu, Y.T. Chiu, C.F. Yang, Effect of different heating process on the photoluminescence properties of perovskite Eu-doped BaZrO3 powder. Appl. Sci. 6, 22 (2016). https://doi.org/10.3390/app6010022
I. Pekgözlü, Synthesis and photoluminescence properties of MSr4(BO3)3: Sm3+ (M = Li, Na). Optik 127, 4114–4117 (2016). https://doi.org/10.1016/j.ijleo.2015.12.120
Y. Zhang, C. Lu, L. Sun, Z. Xu, Y. Ni, Influence of Sm2O3 on the crystallization and luminescence properties of boroaluminosilicate glasses. Mater. Res. Bull. 44, 179–183 (2009). https://doi.org/10.1016/j.materresbull.2008.03.004
C. Madhukar Reddy, G.R. Dillip, K. Mallikarjuna, S.D. Zulifiqar Ali Ahamed, B. Deva Pras, Absorption and fluorescence studies of Sm3+ ions in lead containing sodium fluoroborate glasses. J. Lumin. 131, 1368–1375 (2009). https://doi.org/10.1016/j.jlumin.2011.03.016
K. Annapurna, R.N. Dwivedi, P. Kundu, S. Buddhudu, Fluorescence properties of Sm3+: ZnCl2–BaCl2–LiCl glass. Mater. Res. Bull. 38, 429–436 (2003). https://doi.org/10.1016/S0025-5408(02)01068-1
E. Cavalli, A. Belletti, R. Mahiou, P. Boutinaud, Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions. J. Lumin. 130, 733–736 (2010). https://doi.org/10.1016/j.jlumin.2009.11.038
Z. Yang, D. Xu, J. Sun, Synthesis and luminescence properties of Ba3Lu (PO4)3: Sm3+ phosphor for white light emitting diodes. Opt. Express. 25, 391 (2017). https://doi.org/10.1364/OE.25.00A391
Z.W. Zhang, Y.S. Peng, X.H. Shen, J.P. Zhang, S.T. Song, Q. Lian, Enhanced novel orange red emission in LiSr4−x(BO3)3: xSm3+ by K+. J. Mater. Sci. 49, 2534–2541 (2014). https://doi.org/10.1007/s10853-013-7948-7
Z.P. Yang, Y. Han, Y.C. Song, Y.H. Zhao, P.F. Liu, Synthesis and luminescence properties of a novel red Sr3Bi (PO4) 3: Sm3+ phosphor. J. Rare Earths. 30, 1199–1202 (2012). https://doi.org/10.1016/S1002-0721(12)60205-1
A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, M.C. Kaluza, Structure and fluorescence properties of ternary aluminosilicate glasses doped with samarium and europium. J. Mater. Chem. 2, 4328 (2014). https://doi.org/10.1039/c4tc00036f
W. Carnall, P. Fields, K.J. Rajnak, Chem. Phys. 49, 4424–4442 (1968). https://doi.org/10.1063/1.1669893
G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)
G.S.R. Raju, S. Buddhudu, “Emission analysis of Sm3+ and Dy3+: MgLaLiSi2O7 powder phosphors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 70, 601–605 (2008). https://doi.org/10.1016/j.saa.2007.08.004
V. Singh, S. Watanabe, T.K.G. Rao, J.F.D. Chubaci, H.Y. Kwak, Luminescence and defect centres in MgSrAl10O17:Sm3+ phosphor. J. Non-Cryst. Solids 356, 1185–1190 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.03.007
Y.Q. Zhai, W. Zhang, Y.J. Yin, Y. Han, X. Zhao, H.H. Ding, N. Li, Morphology tenable synthesis and luminescence property of NaGd (MoO4)2: Sm3+ microcrystals. Ceram. Int. 43(1), 841–846 (2017). https://doi.org/10.1016/j.ceramint.2016.10.018
P. Li, X. Zhang, J. Zhang, X. Qi, X. Liu, Investigations of thermal stability and spectroscopic features of Sm3+ doped strontium aluminate glasses. Coatings 3, 1–12 (2012). https://doi.org/10.3390/coatings12010003
D.Y. Medina-Velazquez, U. Caldiño, A. Morales-Ramirez, J. Reyes-Miranda, R.E. Lopez, R. Escudero, R. Ruiz-Guerrero, M.F. MoralesPerez, Synthesis of luminescent terbium-thenoyltriflouroacetone MOF nanorods for green laser application. Opt. Mater. 87, 3–10 (2019). https://doi.org/10.1016/j.optmat.2018.08.021
K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, Bright green emission from fMWCNT embedded co-doped Bi3+, Tb3+: polyvinyl alcohol polymer nanocomposites for photonic applications. RSC Adv. 7, 15084–15095 (2017). https://doi.org/10.1039/C7RA01007A
J. Juárez-Batalla, A.N. Meza-Rocha, G. Muñoz, I. Camarillo, U. Caldiño, Luminescence properties of Tb3+-doped zinc phosphate glasses for green laser application. Opt. Mater. 58, 406–411 (2016). https://doi.org/10.1016/j.optmat.2016.06.022
W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. Iii Tb3+. J. Chem. Phys. 49, 4447–4449 (1968). https://doi.org/10.1063/1.1669895
B. Naveen Kumar Reddy, S. Sailaja, K. Thyagarajan, Y.D. Jho, B. Sudhakar Reddy, Emission analysis of Tb3+-and Sm3+-ion-doped (Li2O/Na2O/ K2O) and (Li2O + Na2O/Li2O+K2O/K2O + Na2O) -modified borosilicate glasses. Luminescence 33, 486–494 (2017). https://doi.org/10.1002/bio.3437
N. Deopa, A.S. Rao, Spectroscopic studies of single near ultraviolet pumped Tb3+ doped lithium lead alumino borate glasses for green lasers and tricolour w-LEDs. J. Lumin. 194, 56–63 (2018). https://doi.org/10.1016/j.jlumin.2017.09.057
Q. Shan, H. Lihui, Z. Shilong, X. Shiqing, Luminescent properties of Tb3+ doped high density borogermanate scintillating glasses. Rare Earth 35, 787–790 (2017). https://doi.org/10.1016/S1002-0721(17)60977-3
R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. AnanthaRaju, S.C. Sharma, B.M. Nagabhushana, H.B. Premkumar, K.M. Girish, J. Alloys compd. 617, 69–75 (2014). https://doi.org/10.1016/j.jallcom.2014.07
Y. Shi, G. Ge, L. Yang et al., Structure and photoluminescence properties of Ca2GdZr2Al3O12:RE3+ (RE3+ = Eu, Sm, Pr, Dy, Tb) phosphors. J. Mater. Sci. 29, 771–777 (2018). https://doi.org/10.1007/s10854-017-7971-6
C.H. Sudhakar Reddy, G. Ravi, P. Venkataswam, K. Sreenu, U. Baig, M. Vithal, Tailoring the luminescence and photocatalytic activity of KMn4(PO4)3 by anions (N3− and S2−) doping. J. Chem. Technol. Biotechnol. 92, 2746–2759 (2017). https://doi.org/10.1002/jctb.5315
M. Manhas, V. Kumar, O.M.N. Twaeaborwa, H.C. Swart, Photoluminescence and thermoluminescence investigations of Ca3B2O6: Sm3+ phosphor. Mater. Res. Express. 2, 075008 (2015). https://doi.org/10.1088/2053-1591/2/7/075008
P. Aryal, H.J. Kim, A. Khan, S. Saha, S.J. Kang, S. Kothan, Y. Yamsuk, J. Kaewkhao, Development of Eu3+ doped phosphate glass for red luminescent solid-state optical devices. J. Lumin. 227, 117564 (2020). https://doi.org/10.1016/j.jlumin.2020.1175642
H. Yang, J. Shi, M. Gong, K.W. Cheah, Synthesis and photoluminescence of Eu3+- or Tb3+-doped Mg2SiO4 nanoparticles prepared by a combined novel approach. J. Lumin. 118, 257–264 (2006). https://doi.org/10.1016/j.jlumin.2005.09.005
G.R. Dillip, C. Madhukar Reddy, M. Rajesh, S. Chaurasia, B. Deva Prasad Raju, S.W. Joo, Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices. Bull. Mater. Sci. 3, 711–717 (2016). https://doi.org/10.1007/s12034-016-1192-0