Synthesis and phase transformation mechanism of Nb2C carbide phases

Journal of Alloys and Compounds - Tập 671 - Trang 424-434 - 2016
B. Vishwanadh1, T.S.R.Ch. Murthy2, A. Arya1, R. Tewari1, G.K. Dey1
1Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094, India
2Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094, India

Tài liệu tham khảo

Storms, 1967 Toth, 1971 Delgrosso, 1967, Development of niobium-zirconium-carbon alloys, J. Less Common. Met., 12, 173, 10.1016/0022-5088(67)90114-2 Campbell, 2008 Javaheri, 2014, The effect of Nb and Ti on structure and mechanical properties of 12Ni-25Cr-0.4C austenitic heat-resistant steel after aging at 900 °C for 1000 h, J. Mater. Eng. Perform., 23, 3558, 10.1007/s11665-014-1009-5 Abderrahim, 2012, Structure, bonding and stability of semi-carbides M2C and sub-carbides M4C (M = V, Cr, Nb, Mo, Ta, W): A first principles investigation, Phys. B. Phys. Condens. Matter., 407, 3833, 10.1016/j.physb.2012.05.070 David, 1976, Growth crystallography and lamellar to rod transition in directionally solidified Nb-Nb2C eutectic composites, Metall. Trans. A, 7, 1051, 10.1007/BF02656586 Grobstein, 1986, Characterization of precipitates in a niobium-zirconium-carbon alloy, NASA Tech. Memo., 100848, 1 Ostermann, 1971, Controlling carbide dispersions in niobium-base alloys, J. Less. Common. Met., 25, 243, 10.1016/0022-5088(71)90148-2 Smith, 1987, The niobium-carbon system, J. Nucl. Mater, 148, 1, 10.1016/0022-3115(87)90512-5 Titran, 1989, Creep strength of niobium alloys, Nb-1 % Zr and PWC-11, NASA Tech. Memo., 102390, 1 Wu, 2013, The phase stability and mechanical properties of Nb – C system: using first-principles calculations and nano-indentation, J. Alloys. Compd., 561, 220, 10.1016/j.jallcom.2013.01.200 Gusev, 2002, 1 Parthe, 1970, On the crystal chemistry of the close packed transition metal carbides. II. A proposal for the notation of the different crystal structures, Acta. Crystallogr. Sect. b. Struct. Crystallogr. Cryst. Chem., 26, 153, 10.1107/S0567740870002108 Rudy, 1967, Lower-temperature modifications of Nb2C and V2C, J. Am. Ceram. Soc., 50, 265, 10.1111/j.1151-2916.1967.tb15101.x Terao, 1964, Structure of the niobium carbides, Jpn. J. Appl. Phy., 104, 104, 10.1143/JJAP.3.104 Lonnberg, 1985, Thermal exapansion and phase analytical Nb2C, J. Less Common. Met., 113, 261, 10.1016/0022-5088(85)90284-X Uz, 1993, Processing and microstructure of Nb-1%Zr-0.1%C alloy sheet, 69 Uz, 1994, Characterization of the microstructure of Nb-1wt.% Zr-0.1wt.% C tubes as affected by thermo- mechanical processing, 393 Titran, 1994, Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1%Zr-0.1%C sheet, NASA Tech. Memo., 106319, 1 Khandarov, 1979, Kinetics of structural changes in an Nb-Zr-C alloy with prolonged holding under load at high temperatures, Mater. Sci., 14, 431, 10.1007/BF01154724 Viswanadham, 1976, Electron microscopic study of precipitation in the system niobium-carbon, J. Less Common Met., 48, 135, 10.1016/0022-5088(76)90239-3 Kurlov, 2006, Phase equilibria in the W–C system and tungsten carbides, Russ. Chem. Rev., 75, 617, 10.1070/RC2006v075n07ABEH003606 Kurlov, 2011, Symmetry analysis of ordered phases of the lower tungsten carbide W2C, Phys. Solid State, 53, 175, 10.1134/S1063783411010173 Kurlov, 2007, Neutron and X-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W2C, Phys. Rev. B, 76, 174115, 10.1103/PhysRevB.76.174115 Kurlov, 2013 Kurlov, 2006, Tungsten carbides and W–C phase diagram, Inorg. Mater, 42, 121, 10.1134/S0020168506020051 Antis, 1981, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, 533, 10.1111/j.1151-2916.1981.tb10320.x Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, J. Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Blochl, 1994, Projector augmented wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Monkhorst, 1976, Special points in brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Methfessel, 1989, High precision sampling for brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616 Sairam, 2014, Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Refract. Met. Hard. Mater., 42, 185, 10.1016/j.ijrmhm.2013.09.004 Sairam, 2014, Reaction spark plasma sintering of niobium diboride, Int. J. Refract. Met. Hard. Mater., 43, 259, 10.1016/j.ijrmhm.2013.12.011 Rudy, 1967, Evidence for zeta Fe2N-type sublattice order in W2C at intermediate temperatures, J. Am. Ceram. Soc., 50, 272, 10.1111/j.1151-2916.1967.tb15105.x Brandes, 1998