Synthesis and microbiological activity of thiourea derivatives of 4-azatricyclo[5.2.2.02,6]undec-8-ene-3,5-dione

Archives of Pharmacal Research - Tập 33 Số 1 - Trang 47-54 - 2010
Marta Struga1, Szymon Rosolowski1, Jerzy Kossakowski1, Joanna Stefańska2
1Department of Medical Chemistry, Medical University, Warsaw, Poland
2Department of Pharmaceutical Microbiology, Medical University, Warsaw, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aaramadaka, S. K. R., Guha, M. K., Prabhu, G., Kini, S. G., and Vijayan, M., Synthesis and evaluation of urea and thiourea derivatives of oxazolidinones as antibacterial agents. Chem. Pharm. Bull., 55, 236–240 (2007).

Bloom, J. D., Dushin, R. G., Curran, K. J., Donahue, F., Norton, E. B., Terefenko, E., Jonas, T. R., Ross, A. A., Feld, B., Lang, S. A., and DiGrandi, M. J., Thiourea inhibitors of herpes viruses. Part 2: N-Benzyl-N′-arylthiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 14, 3401–3406 (2004).

Capobianco, J. O., Cao, Z., Shortrige, V. D., Ma, Z., Flamm, R. K., and Zhong, P., Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother., 44, 1562–1567 (2000).

Chopra, I., Glycylcyclines: third-generation tetracycline antibiotics. Curr. Opin. Pharmacol., 1, 464–469 (2001).

Choudhry, A. E., Mandichak, T. L., Broskey, J. P., Egolf, R. W., Kinsland, C., Begley, T. P., Seefeld, M. A., Ku, T. W., Brown, J. R., Zalacain, M., and Ratnam, K., Inhibitors of pantothenate kinase: Novel antibiotics for staphylococcal infections. Antimicrob. Agents Chemother., 47, 2051–2055 (2003).

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA, (2006).

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disc Susceptibility Tests; Approved Standard M2-A9. Clinical and Laboratory Standards Institute, Wayne, PA, (2006).

Colca, J. R., McDonal, W. G., Waldon, D. J., thomasco, L. M., Gadwood, R. C., Lund, E. T., Cavey, G. S., Mathews, W. R., adams, L. D., Cecil, E. T., Pearson, J. D., Bock, J. H., Mott, J. E., Shinabarger, D. L., Xiong, L., and Mankin, A. S., Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem., 278, 21972–21979 (2003).

Esteves-Souza, A., Pissinate, K., Nascimento, M. G, Grynberg, N. F., and Echevarria, A., Synthesis, cytotoxicity, and DNAtopoisomerase inhibitory activity of new asymmetric ureas and thioureas. Bioorg. Med. Chem., 14, 492–429 (2006).

Fung-Tomc, J. C., Clarc, J., Minassian, B., Pucci, M., Tsai, Y. H., Gradelski, E., Lamb, L., Medina, I., Huczko, E., Kolek, B., Chaniewski, S., Ferraro, C., Washo, T., and Bonner, D. P., In vitro and in vivo activities of a novel cephalosporin, BMS-247243, against methicillin-resistant and -susceptible staphylococci. Antimicrob. Agents Chemother., 46, 971–976 (2002).

Galimand, M., Courvalin, P., and Lambert T., Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation Antimicrob. Agents Chemother., 47, 2565–2571 (2003).

Hooper, D. C., Minimizing potential resistance: the molecular vie—a comment on Courvalin and Trieu-Cuot. Clin. Infect. Dis., 33, 157–160 (2001).

Kaymakcioglu, B. K., Rollas, S., Körcegez, E., and Aricioglu, F., Synthesis and biological evaluation of new N-substituted-N′-(3,5-di/1,3,5-trimethylpyrazole-4-yl)thiourea/urea derivatives. Eur. J. Pharm. Sci., 26, 97–103 (2005).

Leclerq, R. and Courvalin, P., Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob. Agents Chemother., 46, 2727–2734 (2002).

Lee, J., Lee, J., Kang, M., Shin, M.-Y., Kim, J.-M., Kang, S.-U., Lim, J.-O., Choi, H.-K., Suh, Y.-G., Park, H. G., Oh, U., Kim, H. D., Park, Y. H., Ha, H. J., Kim, Y. H., Toth, A., Tran, R., Pearce, L. V., Lundberg, D. J., and Blumberg, P. M., N-(3-acyloxy-2-benzylpropyl)-N′-[4-(methylsulfonylamino) benzyl]thiourea analogues: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J. Med. Chem., 46, 3116–3126 (2003).

Limbau, C., Chifiriuc, M. C. B., Missir, A. V., and Chiruta, I. C., Bleotu, antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl)benzoic acid. C., Molecules, 13, 567–580 (2008).

Nagai, K., Davies, T. A., Jacobs, M. R., and Appelbaum, P. C., Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillinsusceptible, -intermediate, and -resistant pneumococci. Antimicrob. Agents Chemother., 46, 1273–1280 (2002).

Nagano, R., Shibata, K., Adachi, Y., Imamura, H., Hashizume, T., and Morishima, H., In vitro activities of novel trans-3,5-disubstituted pyrrolidinylthio-1beta-methylcarbapenems with potent activities against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 44, 489–495 (2000).

Oliva, B., Miller, K., Caggiano, N., O’Neil, A. J., Cuny, G. D., Hoemann, M. Z., Hauske, J. R., and Chopra, I., Biological properties of novel antistaphylococcal quinoline-indole. Antimicrob. Agents Chemother., 47, 458–466 (2003).

Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J., and De Clercq, E., Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods, 20, 309–321 (1988).

Seth, P. P., Ranken, R., Robinson, D. E., Osgood, S. A., Risen, L. M., Rodgers, E. L., Migawa, M. T., Jefferson, E. A., and Swayze, E. E., Aryl urea analogs with broadspectrum antibacterial activity. Bioorg. Med. Chem. Lett., 14, 5569–5572 (2004).

Struga, M., Kossakowski, J., Kêdzierska, E., Fidecka, S., and Stefanska, J., Synthesis and pharmacological activity of urea and thiourea derivatives of 4-azatricyclo[5.2.2.02,6] undec-8-ene-3,5-dione. Chem. Pharm. Bull., 55, 796–799 (2007).

Struga, M., Kossakowski, J., Koziol, A. E., and Fidecka, S., Synthesis and pharmacological activity of thiourea derivatives of 1,7,8,9-tetrmethyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione. Lett. Drug Des. Discov., 6, 445–450 (2009a).

Struga, M., Kossakowski, J., Koziol, A. E., and Fidecka, S., Synthesis and pharmacological activity of thiourea and 1,3-thiazepine derivatives. Eur. J. Med. Chem., doi:10.1016 / j.ejmech.2009.08.013 (2009b).

Struga, M., Kossakowski, J., Stefanska J., Zimniak A., and Koziol, A. E., Synthesis and antibacterial activity of bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[ 5.2.1.02,6]dec-8-en-4-yloksy)-propyl]-dimethyl-ammonium chloride. Eur. J. Med. Chem., 43, 1309–1314 (2008a).

Struga, M., Krawiecka, M., Kossakowski, J., Stefanska, J., Miroslaw, B., and Koziol, A. E., Synthesis and structural characterisation of derivatives of tricyclic[5.2.1.02,6]dec-8-ene-3,5-dione with an expected antimicrobial activity. J. Chin. Chem. Soc., 55, 1258–1265 (2008b).

Tenover, F. C., Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin. Infect. Dis., 33, 108–115 (2001).

Venkatachalam, T. K., Mao, C., and Uckun, F. M., Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg. Med. Chem., 12, 4275–4284 (2004).