Synthesis and high thermal stability of Mn doped Y2/3Cu3Ti4O12 negative temperature coefficient ceramic

Journal of Solid State Chemistry - Tập 303 - Trang 122536 - 2021
Yaxin Wei1,2, Bo Zhang1, Zhilong Fu1, Yafei Liu1, Huimin Chen2, Li Ni3, Yang Zhou3, Aimin Chang1
1Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
2Department of Physics, Changji University, 77 North Beijing Road, Changji, 831100, China
3ZKLM New Material (Yangzhou) Co., Ltd., Yangzhou, 225600, China

Tài liệu tham khảo

Ren, 2019, Improvement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films, J. Eur. Ceram. Soc., 39, 4189, 10.1016/j.jeurceramsoc.2019.05.068 Chen, 2015, Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse microemulsion method, Ceram. Int., 41, 2847, 10.1016/j.ceramint.2014.10.106 Muralidharan, 2011, Optimization of process parameters for the production of Ni-Mn-Co-Fe based NTC chip thermistors through tape casting route, J. Alloys Compd., 509, 9363, 10.1016/j.jallcom.2011.07.037 Zhao, 2014, LaMnO3-Ni0.75Mn2.25O4 supported bilayer NTC thermistors, J. Am. Ceram. Soc., 97, 1016, 10.1111/jace.12870 Liu, 2019, Core-shell NTC materials with low thermal constant and high resistivity for wide-temperature thermistor ceramics, J. Am. Ceram. Soc., 102, 4393, 10.1111/jace.16418 Stojanovic, 2013, Electrical characterization of nickel manganite powders in high-frequency range, J. Alloys Compd., 554, 264, 10.1016/j.jallcom.2012.11.184 Kang, 2012, LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition, J. Alloys Compd., 534, 70, 10.1016/j.jallcom.2012.04.038 Park, 2009, The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x ≤ 0.075) NTC thermistors, J. Alloys Compd., 467, 310, 10.1016/j.jallcom.2007.11.105 Li, 2021, Enhanced aging and thermal shock performance of Mn1.95-xCo0.21Ni0.84SrxO4 NTC ceramics, J. Adv. Ceram., 10, 258, 10.1007/s40145-020-0436-z Deepa, 2011, Structural and electrical properties of nonstoichiometric semiconducting pyrochlores in Ca-Ce-Ti-Nb-O system, Mater. Chem. Phys., 127, 162, 10.1016/j.matchemphys.2011.01.053 Deepa, 2009, Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties, Mater, Res. Bull., 44, 1481, 10.1016/j.materresbull.2009.02.014 Radhakrishnan, 2012, Role of bond strength on the lattice thermal expansion and oxide ion conductivity in quaternary pyrochlore solid solutions, Inorg. Chem., 51, 2409, 10.1021/ic202383f Sohn, 2003, The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst, Catal. Today, 83, 289, 10.1016/S0920-5861(03)00249-9 Vassen, 2000, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 83, 2023, 10.1111/j.1151-2916.2000.tb01506.x Xia, 2011, Order-disorder transformation and enhanced oxide-ionic conductivity of (Sm1-xDyx)2Zr2O7 ceramics, J. Power Sources, 196, 1840, 10.1016/j.jpowsour.2010.09.056 Subramanian, 2000, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem., 151, 323, 10.1006/jssc.2000.8703 Subramanian, 2002, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy, Solid State Sci., 4, 347, 10.1016/S1293-2558(01)01262-6 Zhang, 2016, Defect and electrical conduction in Mn-doped CaCu3-xMnxTi4O12 negative temperature coefficient ceramics, J. Alloys Compd., 663, 474, 10.1016/j.jallcom.2015.12.162 Chen, 2020, New negative temperature coefficient ceramics in Zr-doped CaCu3Ti4O12 system, J. Alloys Compd., 821, 153476, 10.1016/j.jallcom.2019.153476 Parra, 2010, Sol-gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response, J. Solid State Chem., 183, 1209, 10.1016/j.jssc.2010.03.033 Li, 2016, Towards enhanced varistor property and lower dielectric loss of CaCu3Ti4O12 based ceramics, Mater. Des., 92, 546, 10.1016/j.matdes.2015.12.073 Li, 2010, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12, Sensor. Actuator. B Chem., 147, 447, 10.1016/j.snb.2010.03.063 Liang, 2013, The lowered dielectric loss and grain-boundary effects in La-doped Y2/3Cu3Ti4O12 ceramics, J. Am. Ceram. Soc., 96, 3883, 10.1111/jace.12644 Feteira, 2009, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective, J. Am. Ceram. Soc., 92, 967, 10.1111/j.1551-2916.2009.02990.x Zhang, 2014, Electrical conductivity anomaly and X-ray photoelectron spectroscopy investigation of YCr1-xMnxO3 negative temperature coefficient ceramics, Appl. Phys. Lett., 104, 102109, 10.1063/1.4868435 Luo, 2005, High temperature NTC BaTiO3-based ceramic resistors, Mater. Lett., 59, 3881, 10.1016/j.matlet.2005.06.065 Sharma, 2015, Rationalization of dielectric properties of nano-sized iron doped yttrium copper titanate using impedance and modulus studies, Mater. Sci. Semicond. Process., 31, 720, 10.1016/j.mssp.2014.12.069 Chen, 2020, New negative temperature coefficient ceramics in Ca1-xYxCu3Ti3.9Zr0.1O12 system, J. Mater. Sci. Mater. Electron., 31, 1745, 10.1007/s10854-019-02692-0 Xu, 2015, Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr) doped CaCu3Ti4O12 thin films prepared by the sol-gel method, Prog. Nat. Sci-Mater., 25, 399, 10.1016/j.pnsc.2015.09.015 Peng, 2017, Improved dielectric properties and grain boundary response of SrTiO3 doped Y2/3Cu3Ti4O12 ceramics fabricated by Sol-gel process for high-energy-density storage applications, J. Eur. Ceram. Soc., 37, 4637, 10.1016/j.jeurceramsoc.2017.06.025 Zhang, 2019, Synthesis of pilot-scale Co2Mn1.5Fe2.1Zn0.4O8 fabricated by hydrothermal method for NTC thermistor, J. Alloys Compd., 797, 1295, 10.1016/j.jallcom.2019.05.200 Liu, 2020, Novel thermal-sensitive properties of NBT-BZT composite ceramics for high-temperature NTC thermistors, J. Am. Ceram. Soc., 103, 48, 10.1111/jace.16774 Wang, 2016, Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range, J. Electroceram., 36, 46, 10.1007/s10832-016-0024-3 Zhang, 2015, Effects of substituting Ca2+ on the structure and electrical properties of 0.6Y2O3-0.4YCr0.5Mn0.5O3 composite NTC ceramics, J. Mater. Sci. Mater. Electron., 27, 1764, 10.1007/s10854-015-3951-x Somsack, 2012, Very low loss tangent and high dielectric permittivity in Pure-CaCu3Ti4O12 ceramics prepared by a modified sol-gel process, J. Am. Ceram. Soc., 95, 1497, 10.1111/j.1551-2916.2012.05147.x Yuan, 2017, New negative temperature coefficient ceramics in Ca1-xYxCu2.5Mn0.5Ti4O12 system, J. Mater. Sci. Mater. Electron., 29, 2331, 10.1007/s10854-017-8150-5 R Bueno, 2009, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/5/055404 Ni, 2007, Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics, Appl. Phys. Lett., 91, 122905, 10.1063/1.2785128 Philip, 1999, Effect of valence fluctuations in A sites on the transport properties of La1-xRxMnO3 (R=Ce, Pr), J. Phys. Condens. Matter, 11, 8537, 10.1088/0953-8984/11/43/317 Li, 2000, Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0<x<0.75), Chem. Mater., 12, 2424, 10.1021/cm000132r Kobayashi, 1991, Metal-insulator transition and thermoelectric properties in the system (R1-xCax)MnO3-δ (R: Tb, Ho, Y), J. Solid State Chem., 92, 116, 10.1016/0022-4596(91)90248-G Ohtaki, 1995, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi), J. Solid State Chem., 120, 105, 10.1006/jssc.1995.1384 Park, 2009, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0≤x≤0.3) NTC thermistors, J. Alloys Compd., 475, 513, 10.1016/j.jallcom.2008.07.076 Li, 2019, Filiform metal silver nanoinclusions to enhance thermoelectric performance of P-type Ca3Co4O9+# oxide, Appl. Mater. Interfaces, 11, 42131, 10.1021/acsami.9b13607 Kamlo, 2011, Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere, J. Eur. Ceram. Soc., 31, 1457, 10.1016/j.jeurceramsoc.2010.12.025 Tijller, 1977, Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solid., 38, 859, 10.1016/0022-3697(77)90124-X Li, 2004, Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of “SrCu3Ti4O12”, Chem. Mater., 16, 5223, 10.1021/cm048345u Adams, 2006, Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics, J. Am. Ceram. Soc., 89, 3129, 10.1111/j.1551-2916.2006.01184.x Park, 2005, Fabrication and electrical properties of Mn-Ni-Co-Cu-Si oxides negative temperature coefficient thermistors, J. Am. Ceram. Soc., 88, 862, 10.1111/j.1551-2916.2004.00170.x Kim, 2012, Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12, Phys. Rev. B, 85, 245210, 10.1103/PhysRevB.85.245210 Rai, 2010, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route, J. Alloys Compd., 491, 507, 10.1016/j.jallcom.2009.10.247 Li, 2014, Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method, J. Alloys Compd., 582, 283, 10.1016/j.jallcom.2013.08.014 Zhao, 2008, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics, J. Eur. Ceram. Soc., 28, 35, 10.1016/j.jeurceramsoc.2007.06.007 Fu, 2020, Highly dense 0.3CaCeNbWO8-0.7LaMnO3 composite ceramics fabricated by cold sintering process, J. Am. Ceram. Soc., 103, 6586, 10.1111/jace.17353 Liu, 2021, Microstructural and electrical changes in Ca0.9R0.1CeNbMoO8 (R=Y, Sm, Nd, La) ceramics induced by rare-earth ion doping, J. Am. Ceram. Soc., 104, 2134, 10.1111/jace.17670 Liu, 2017, Effect of Fe addition on microstructure and electrical properties of Co1.5Mn1.5-xFexO4 (0.2≤x≤1.0) NTC thermistors, J. Mater. Sci. Mater. Electron., 28, 7243, 10.1007/s10854-017-6405-9 Cheng, 2015, Phase transition and electrical properties of Ni1-xZnxMn2O4 (0≤x≤1.0) NTC ceramics, J. Mater. Sci. Mater. Electron., 26, 1374, 10.1007/s10854-014-2549-z Guan, 2019, LaMn1-xTixO3-NiMn2O4(0≤x≤0.7): a composite NTC ceramic with controllable electrical property and high stability, J. Eur. Ceram. Soc., 39, 2692, 10.1016/j.jeurceramsoc.2019.03.003