Synthesis and high thermal stability of Mn doped Y2/3Cu3Ti4O12 negative temperature coefficient ceramic
Tài liệu tham khảo
Ren, 2019, Improvement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films, J. Eur. Ceram. Soc., 39, 4189, 10.1016/j.jeurceramsoc.2019.05.068
Chen, 2015, Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse microemulsion method, Ceram. Int., 41, 2847, 10.1016/j.ceramint.2014.10.106
Muralidharan, 2011, Optimization of process parameters for the production of Ni-Mn-Co-Fe based NTC chip thermistors through tape casting route, J. Alloys Compd., 509, 9363, 10.1016/j.jallcom.2011.07.037
Zhao, 2014, LaMnO3-Ni0.75Mn2.25O4 supported bilayer NTC thermistors, J. Am. Ceram. Soc., 97, 1016, 10.1111/jace.12870
Liu, 2019, Core-shell NTC materials with low thermal constant and high resistivity for wide-temperature thermistor ceramics, J. Am. Ceram. Soc., 102, 4393, 10.1111/jace.16418
Stojanovic, 2013, Electrical characterization of nickel manganite powders in high-frequency range, J. Alloys Compd., 554, 264, 10.1016/j.jallcom.2012.11.184
Kang, 2012, LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition, J. Alloys Compd., 534, 70, 10.1016/j.jallcom.2012.04.038
Park, 2009, The effect of Zn on the microstructure and electrical properties of Mn1.17−xNi0.93Co0.9ZnxO4 (0 ≤ x ≤ 0.075) NTC thermistors, J. Alloys Compd., 467, 310, 10.1016/j.jallcom.2007.11.105
Li, 2021, Enhanced aging and thermal shock performance of Mn1.95-xCo0.21Ni0.84SrxO4 NTC ceramics, J. Adv. Ceram., 10, 258, 10.1007/s40145-020-0436-z
Deepa, 2011, Structural and electrical properties of nonstoichiometric semiconducting pyrochlores in Ca-Ce-Ti-Nb-O system, Mater. Chem. Phys., 127, 162, 10.1016/j.matchemphys.2011.01.053
Deepa, 2009, Pyrochlore type semiconducting ceramic oxides in Ca-Ce-Ti-M-O system (M = Nb or Ta)-Structure, microstructure and electrical properties, Mater, Res. Bull., 44, 1481, 10.1016/j.materresbull.2009.02.014
Radhakrishnan, 2012, Role of bond strength on the lattice thermal expansion and oxide ion conductivity in quaternary pyrochlore solid solutions, Inorg. Chem., 51, 2409, 10.1021/ic202383f
Sohn, 2003, The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst, Catal. Today, 83, 289, 10.1016/S0920-5861(03)00249-9
Vassen, 2000, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 83, 2023, 10.1111/j.1151-2916.2000.tb01506.x
Xia, 2011, Order-disorder transformation and enhanced oxide-ionic conductivity of (Sm1-xDyx)2Zr2O7 ceramics, J. Power Sources, 196, 1840, 10.1016/j.jpowsour.2010.09.056
Subramanian, 2000, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem., 151, 323, 10.1006/jssc.2000.8703
Subramanian, 2002, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy, Solid State Sci., 4, 347, 10.1016/S1293-2558(01)01262-6
Zhang, 2016, Defect and electrical conduction in Mn-doped CaCu3-xMnxTi4O12 negative temperature coefficient ceramics, J. Alloys Compd., 663, 474, 10.1016/j.jallcom.2015.12.162
Chen, 2020, New negative temperature coefficient ceramics in Zr-doped CaCu3Ti4O12 system, J. Alloys Compd., 821, 153476, 10.1016/j.jallcom.2019.153476
Parra, 2010, Sol-gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response, J. Solid State Chem., 183, 1209, 10.1016/j.jssc.2010.03.033
Li, 2016, Towards enhanced varistor property and lower dielectric loss of CaCu3Ti4O12 based ceramics, Mater. Des., 92, 546, 10.1016/j.matdes.2015.12.073
Li, 2010, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12, Sensor. Actuator. B Chem., 147, 447, 10.1016/j.snb.2010.03.063
Liang, 2013, The lowered dielectric loss and grain-boundary effects in La-doped Y2/3Cu3Ti4O12 ceramics, J. Am. Ceram. Soc., 96, 3883, 10.1111/jace.12644
Feteira, 2009, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective, J. Am. Ceram. Soc., 92, 967, 10.1111/j.1551-2916.2009.02990.x
Zhang, 2014, Electrical conductivity anomaly and X-ray photoelectron spectroscopy investigation of YCr1-xMnxO3 negative temperature coefficient ceramics, Appl. Phys. Lett., 104, 102109, 10.1063/1.4868435
Luo, 2005, High temperature NTC BaTiO3-based ceramic resistors, Mater. Lett., 59, 3881, 10.1016/j.matlet.2005.06.065
Sharma, 2015, Rationalization of dielectric properties of nano-sized iron doped yttrium copper titanate using impedance and modulus studies, Mater. Sci. Semicond. Process., 31, 720, 10.1016/j.mssp.2014.12.069
Chen, 2020, New negative temperature coefficient ceramics in Ca1-xYxCu3Ti3.9Zr0.1O12 system, J. Mater. Sci. Mater. Electron., 31, 1745, 10.1007/s10854-019-02692-0
Xu, 2015, Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr) doped CaCu3Ti4O12 thin films prepared by the sol-gel method, Prog. Nat. Sci-Mater., 25, 399, 10.1016/j.pnsc.2015.09.015
Peng, 2017, Improved dielectric properties and grain boundary response of SrTiO3 doped Y2/3Cu3Ti4O12 ceramics fabricated by Sol-gel process for high-energy-density storage applications, J. Eur. Ceram. Soc., 37, 4637, 10.1016/j.jeurceramsoc.2017.06.025
Zhang, 2019, Synthesis of pilot-scale Co2Mn1.5Fe2.1Zn0.4O8 fabricated by hydrothermal method for NTC thermistor, J. Alloys Compd., 797, 1295, 10.1016/j.jallcom.2019.05.200
Liu, 2020, Novel thermal-sensitive properties of NBT-BZT composite ceramics for high-temperature NTC thermistors, J. Am. Ceram. Soc., 103, 48, 10.1111/jace.16774
Wang, 2016, Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range, J. Electroceram., 36, 46, 10.1007/s10832-016-0024-3
Zhang, 2015, Effects of substituting Ca2+ on the structure and electrical properties of 0.6Y2O3-0.4YCr0.5Mn0.5O3 composite NTC ceramics, J. Mater. Sci. Mater. Electron., 27, 1764, 10.1007/s10854-015-3951-x
Somsack, 2012, Very low loss tangent and high dielectric permittivity in Pure-CaCu3Ti4O12 ceramics prepared by a modified sol-gel process, J. Am. Ceram. Soc., 95, 1497, 10.1111/j.1551-2916.2012.05147.x
Yuan, 2017, New negative temperature coefficient ceramics in Ca1-xYxCu2.5Mn0.5Ti4O12 system, J. Mater. Sci. Mater. Electron., 29, 2331, 10.1007/s10854-017-8150-5
R Bueno, 2009, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/5/055404
Ni, 2007, Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics, Appl. Phys. Lett., 91, 122905, 10.1063/1.2785128
Philip, 1999, Effect of valence fluctuations in A sites on the transport properties of La1-xRxMnO3 (R=Ce, Pr), J. Phys. Condens. Matter, 11, 8537, 10.1088/0953-8984/11/43/317
Li, 2000, Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0<x<0.75), Chem. Mater., 12, 2424, 10.1021/cm000132r
Kobayashi, 1991, Metal-insulator transition and thermoelectric properties in the system (R1-xCax)MnO3-δ (R: Tb, Ho, Y), J. Solid State Chem., 92, 116, 10.1016/0022-4596(91)90248-G
Ohtaki, 1995, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi), J. Solid State Chem., 120, 105, 10.1006/jssc.1995.1384
Park, 2009, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0≤x≤0.3) NTC thermistors, J. Alloys Compd., 475, 513, 10.1016/j.jallcom.2008.07.076
Li, 2019, Filiform metal silver nanoinclusions to enhance thermoelectric performance of P-type Ca3Co4O9+# oxide, Appl. Mater. Interfaces, 11, 42131, 10.1021/acsami.9b13607
Kamlo, 2011, Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere, J. Eur. Ceram. Soc., 31, 1457, 10.1016/j.jeurceramsoc.2010.12.025
Tijller, 1977, Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solid., 38, 859, 10.1016/0022-3697(77)90124-X
Li, 2004, Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of “SrCu3Ti4O12”, Chem. Mater., 16, 5223, 10.1021/cm048345u
Adams, 2006, Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics, J. Am. Ceram. Soc., 89, 3129, 10.1111/j.1551-2916.2006.01184.x
Park, 2005, Fabrication and electrical properties of Mn-Ni-Co-Cu-Si oxides negative temperature coefficient thermistors, J. Am. Ceram. Soc., 88, 862, 10.1111/j.1551-2916.2004.00170.x
Kim, 2012, Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12, Phys. Rev. B, 85, 245210, 10.1103/PhysRevB.85.245210
Rai, 2010, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route, J. Alloys Compd., 491, 507, 10.1016/j.jallcom.2009.10.247
Li, 2014, Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method, J. Alloys Compd., 582, 283, 10.1016/j.jallcom.2013.08.014
Zhao, 2008, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics, J. Eur. Ceram. Soc., 28, 35, 10.1016/j.jeurceramsoc.2007.06.007
Fu, 2020, Highly dense 0.3CaCeNbWO8-0.7LaMnO3 composite ceramics fabricated by cold sintering process, J. Am. Ceram. Soc., 103, 6586, 10.1111/jace.17353
Liu, 2021, Microstructural and electrical changes in Ca0.9R0.1CeNbMoO8 (R=Y, Sm, Nd, La) ceramics induced by rare-earth ion doping, J. Am. Ceram. Soc., 104, 2134, 10.1111/jace.17670
Liu, 2017, Effect of Fe addition on microstructure and electrical properties of Co1.5Mn1.5-xFexO4 (0.2≤x≤1.0) NTC thermistors, J. Mater. Sci. Mater. Electron., 28, 7243, 10.1007/s10854-017-6405-9
Cheng, 2015, Phase transition and electrical properties of Ni1-xZnxMn2O4 (0≤x≤1.0) NTC ceramics, J. Mater. Sci. Mater. Electron., 26, 1374, 10.1007/s10854-014-2549-z
Guan, 2019, LaMn1-xTixO3-NiMn2O4(0≤x≤0.7): a composite NTC ceramic with controllable electrical property and high stability, J. Eur. Ceram. Soc., 39, 2692, 10.1016/j.jeurceramsoc.2019.03.003
