Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans
Tài liệu tham khảo
van Meer, 2008, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112, 10.1038/nrm2330
Bouyanfif, 2009, The nematode Caenorhabditis elegans as a model organism to study metabolic effects of ω-3 polyunsaturated fatty acids in obesity, Adv. Nutr., 10, 165, 10.1093/advances/nmy059
Funk, 2001, Prostaglandins and leukotrienes: advances in eicosanoid biology, Science, 294, 1871, 10.1126/science.294.5548.1871
Catala, 2010, Synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids, Biochem. Biophys. Res. Commun., 399, 318, 10.1016/j.bbrc.2010.07.087
Stables, 2011, Old and new generation lipid mediators in acute inflammation and resolution, Prog. Lipid Res., 50, 35, 10.1016/j.plipres.2010.07.005
Massey, 2011, Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites, Biochem. Soc. Trans., 39, 1240, 10.1042/BST0391240
Vrablik, 2013, Polyunsaturated fatty acid derived signaling in reproduction and development: insights from Caenorhabditis elegans and Drosophila melanogaster, Mol. Reprod. Dev., 80, 244, 10.1002/mrd.22167
Arnold, 2010, Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids, Pharmacol. Rep., 62, 536, 10.1016/S1734-1140(10)70311-X
Ostermann, 2017, Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids, Food Funct., 8, 2355, 10.1039/C7FO00403F
Ostermann, 2017, Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet, PLoS One, 12, 10.1371/journal.pone.0184470
Tiwary, 2019, Signature profile of cyclooxygenase-independent F2 series prostaglandins in C. Elegans and their role in sperm motility, Sci. Rep., 9, 11750, 10.1038/s41598-019-48062-y
Morris, 2019, Oxylipin profiling of Alzheimer’s disease in nondiabetic and Type 2 diabetic elderly, Metabolites, 9, 177, 10.3390/metabo9090177
Deline, 2015, Epoxides derived from dietary dihomo-gamma-linolenic acid induce germ cell death in C. Elegans, Sci. Rep., 5, 15417, 10.1038/srep15417
Mozaffarian, 2011, Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events, J. Am. Coll. Cardiol., 58, 2047, 10.1016/j.jacc.2011.06.063
Zhang, 2013, Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis, Proc. Natl. Acad. Sci. U. S. A., 110, 6530, 10.1073/pnas.1304321110
Wang, 2014, Omega-3 Polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer, Prostaglandins Other Lipid Mediat., 113–115, 13, 10.1016/j.prostaglandins.2014.07.002
Calder, 2015, Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance, Biochim. Biophys. Acta, 1851, 469, 10.1016/j.bbalip.2014.08.010
Lee, 2016, Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances, Nutrient, 8, 23, 10.3390/nu8010023
Watts, 2016, Using Caenorhabditis elegans to uncover conserved functions of omega-3 and omega-6 Fatty Acids, J. Clin. Med., 5, e19, 10.3390/jcm5020019
Corsi, 2015, A transparent window into biology: a primer on Caenorhabditis elegans, Genetics, 200, 387, 10.1534/genetics.115.176099
Watts, 2002, Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U. S. A., 99, 5854, 10.1073/pnas.092064799
Spychalla, 1997, Identification of an animal omega-3 fatty acid desaturase by heterologous expression in arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 94, 1142, 10.1073/pnas.94.4.1142
Watts, 2017, Lipid and carbohydrate metabolism in Caenorhabditis elegans, Genetics, 207, 413
Jia, 2019, Reducing effect of farnesylquinone on lipid mass in C. Elegans by modulating lipid metabolism, Mar. Drugs, 17, 336, 10.3390/md17060336
Watts, 2003, Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants, Genetics, 163, 581, 10.1093/genetics/163.2.581
Lesa, 2003, Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. Elegans, J. Cell. Sci., 116, 4965, 10.1242/jcs.00918
Brock, 2007, Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans, Genetics, 176, 865, 10.1534/genetics.107.071860
Yi, 2014, Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherentanti-Stokes Raman scattering microscopy, J. Biomed. Opt., 19
Anderson, 2019, The fatty acid oleate is required for innate immune activation and pathogen defense in Caenorhabditis elegans, PLoS Pathog., 15, 10.1371/journal.ppat.1007893
Kubagawa, 2006, Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo, Nat. Cell Biol., 8, 1143, 10.1038/ncb1476
Hoang, 2013, A heterogeneous mixture of F-series prostaglandins promotes sperm guidance in the Caenorhabditis elegans reproductive tract, PLoS Genet., 9, 19, 10.1371/journal.pgen.1003271
Hillyard, 2009, Quantitative lipid analysis and life span of the fat-3 mutant of Caenorhabditis elegans, J. Agric. Food Chem., 57, 3389, 10.1021/jf8031414
Kulas, 2008, Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans, Arch. Biochem. Biophys., 472, 65, 10.1016/j.abb.2008.02.002
Kosel, 2011, Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans, Biochem. J., 435, 689, 10.1042/BJ20101942
Simopoulos, 2000, Human requirement for n-3 polyunsaturated fatty acids, Poult. Sci., 79, 961, 10.1093/ps/79.7.961
Burr, 1930, On the nature and role of the fatty acids essential for nutrition, J. Biol. Chem., 86, 587, 10.1016/S0021-9258(20)78929-5
Wallis, 2002, Polyunsaturated fatty acid synthesis: what will they think of next?, Trends Biochem. Sci., 27, 467, 10.1016/S0968-0004(02)02168-0
Harris, 2009, Circulation, 119, 902, 10.1161/CIRCULATIONAHA.108.191627
Konkel, 2011, Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids, Biochim. Biophys. Acta, 1814, 210, 10.1016/j.bbapap.2010.09.009
Burdge, 2005, Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults, Reprod. Nutr. Dev., 45, 10.1051/rnd:2005047
Arterburn, 2006, Distribution, interconversion, and dose response of n-3 fatty acids in humans, Am. J. Clin. Nutr., 83, 1467S, 10.1093/ajcn/83.6.1467S
Guillou, 2010, The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice, Prog. Lipid Res., 49, 10.1016/j.plipres.2009.12.002
Soberman, 2003, The organization and consequences of eicosanoid signaling, J. Clin. Invest., 111, 1107, 10.1172/JCI200318338
Dennis, 2011, Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention, Chem. Rev., 111, 6130, 10.1021/cr200085w
Willenberg, 2015, Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins, Anal. Bioanal. Chem., 407, 2675, 10.1007/s00216-014-8369-4
McGiff, 1999, 20-HETE and the kidney: resolution of old problems and new beginnings, Am. J. Physiol., 277, R607
Smith, 2000, Cyclooxygenases: structural, cellular, and molecular biology, Annu. Rev. Biochem., 69, 145, 10.1146/annurev.biochem.69.1.145
Simmons, 2004, Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition, Pharmacol. Rev., 56, 387, 10.1124/pr.56.3.3
Bos, 2004, Prostanoids and prostanoid receptors in signal transduction, Int. J. Biochem. Cell Biol., 36, 1187, 10.1016/j.biocel.2003.08.006
Kuhn, 2005, Structural biology of mammalian lipoxygenases: enzymatic consequences of targeted alterations of the protein structure, Biochem. Biophys. Res. Commun., 338, 93, 10.1016/j.bbrc.2005.08.238
Buczynski, 2009, Thematic Review Series: proteomics. An integrated omics analysis of eicosanoid biology, J. Lipid Res., 50, 1015, 10.1194/jlr.R900004-JLR200
Fan, 1992, Mouse peritoneal macrophage prostaglandin E1 synthesis is altered by dietary gamma-linolenic acid, J. Nutr., 122, 1600, 10.1093/jn/122.8.1600
Laneuville, 1995, Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and -2. Formation of 12-hydroxy-(9Z, 13E/Z, 15Z)- octadecatrienoic acids from alpha-linolenic acid, J. Biol. Chem., 270, 19330, 10.1074/jbc.270.33.19330
Serhan, 2002, Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals, J. Exp. Med., 196, 1025, 10.1084/jem.20020760
Buckley, 2014, Proresolving lipid mediators and mechanisms in the resolution of acute inflammation, Immunity, 40, 315, 10.1016/j.immuni.2014.02.009
Demarquoy, 2014, Biosynthesis, metabolism and function of protectins and resolvins, Clin. Lipidol., 9, 683, 10.2217/clp.14.44
Kuhn, 2015, Mammalian lipoxygenases and their biological relevance, Biochim. Biophys. Acta, 1851, 308, 10.1016/j.bbalip.2014.10.002
Spector, 2015, Cytochrome P epoxygenase pathway of polyunsaturated fatty acid metabolism, Biochim. Biophys. Acta, 1851, 356, 10.1016/j.bbalip.2014.07.020
Samuelsson, 1987, Leukotrienes and lipoxins: structures, biosynthesis, and biological effects, Science, 237, 1171, 10.1126/science.2820055
Serhan, 2015, Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome, Biochim. Biophys. Acta, 1851, 397, 10.1016/j.bbalip.2014.08.006
Feltenmark, 2008, Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells, Proc. Natl. Acad. Sci. U. S. A., 105, 680, 10.1073/pnas.0710127105
Pace-Asciak, 2015, Pathophysiology of the hepoxilins, Biochim. Biophys. Acta, 1851, 383, 10.1016/j.bbalip.2014.09.007
Roman, 2002, P-450 metabolites of arachidonic acid in the control of cardiovascular function, Physiol. Rev., 82, 131, 10.1152/physrev.00021.2001
Wu, 1998, n-3 polyunsaturated fatty acids and immune function, Proc. Nutr. Soc., 57, 503, 10.1079/PNS19980074
Harris, 2000, The lipemia of sepsis: triglyceride-rich lipoproteins as agents of innate immunity, J. Endotoxin Res., 6, 421
Swanson, 2012, Omega-3 fatty acids EPA and DHA: health benefits throughout life, Adv. Nutr., 3, 1, 10.3945/an.111.000893
Wiest, 2016, Dietary omega-3 polyunsaturated fatty acids prevent vascular dysfunction and attenuate cytochrome P4501A1 expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin, Toxicol. Sci., 154, 43, 10.1093/toxsci/kfw145
Endo, 2016, Cardioprotective mechanism of omega-3 polyunsaturated fatty acids, J. Cardiol., 67, 22, 10.1016/j.jjcc.2015.08.002
Zhang, 2004, Peroxisome proliferator-activated receptor-{gamma} and its ligands attenuate biologic functions of human natural killer cells, Blood, 104, 3276, 10.1182/blood-2004-02-0664
Gogolak, 2007, Differentiation of CD1a2 and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPAR {gamma}, Blood, 109, 643, 10.1182/blood-2006-04-016840
Han, 2015, Twists and turns-how we stepped into and had fun in the “boring” lipid field, Sci. China Life Sci., 58, 1073, 10.1007/s11427-015-4949-6
Zhang, 2015, RNAi-based biosynthetic pathway screens to identify in vivo functions of non-nucleic acid-based metabolites such as lipids, Nat. Protoc., 10, 681, 10.1038/nprot.2015.031
Mullaney, 2009, C. Elegans fat storage and metabolic regulation, Biochim. Biophys. Acta, 1791, 474, 10.1016/j.bbalip.2008.12.013
Ashrafi, 2003, Genome wide RNAi analysis of Caenorhabditis elegans fat regulatory genes, Nature, 421, 268, 10.1038/nature01279
Murphy, 2003, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature, 424, 277, 10.1038/nature01789
Houthoofd, 2002, Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans, Exp. Gerontol., 37, 1371, 10.1016/S0531-5565(02)00173-0
Perez, 2008, A 13C isotope labelling strategy reveals the influence of insulin signaling on lipogenesis in C. Elegans, Cell Metab., 8, 266, 10.1016/j.cmet.2008.08.007
Ashrafi, 2007, Obesity and the regulation of fat metabolism, WormBook, 1
Kniazeva, 2003, Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans, Genetics, 163, 159, 10.1093/genetics/163.1.159
Entchev, 2008, LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans, J. Biol. Chem., 283, 17550, 10.1074/jbc.M800965200
Zhou, 2011, Caenorhabditis elegans Δ12- desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Δ12 and Δ15 positions, J. Biol. Chem., 286, 43644, 10.1074/jbc.M111.266114
Wang, 2013, ω-3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use, Appl. Microbiol. Biotechnol., 97, 10255, 10.1007/s00253-013-5336-5
Watts, 2000, A palmitoyl-CoA-specific delta9 fatty acid desaturase from Caenorhabditis elegans, Biochem. Biophys. Res. Commun., 272, 263, 10.1006/bbrc.2000.2772
Rappleye, 2003, Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity, BMC Dev. Biol., 3, 8, 10.1186/1471-213X-3-8
Tanaka, 1996, Effects of growth temperature on the fatty acid composition of the free-living nematode Caenorhabditis elegans, Lipids, 31, 1173, 10.1007/BF02524292
Peyou-Ndi, 2000, Identification and characterization of an animal delta (12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae, Arch. Biochem. Biophys., 376, 399, 10.1006/abbi.2000.1733
Shi, 2013, Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase, J. Lipid Res., 54, 2504, 10.1194/jlr.M039669
Pawlosky, 2001, Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans, J. Lipid Res., 42, 1257, 10.1016/S0022-2275(20)31576-5
Schmocker, 2007, Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines, Hepatology, 45, 864, 10.1002/hep.21626
Menzel, 2001, A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible, Arch. Biochem. Biophys., 395, 158, 10.1006/abbi.2001.2568
Gotoh, 1998, Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes, Mol. Biol. Evol., 15, 1447, 10.1093/oxfordjournals.molbev.a025872
Lam, 2017, Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival, Redox Biol., 12, 967, 10.1016/j.redox.2017.05.002
Edmonds, 2010, Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction, Dev. Cell, 19, 858, 10.1016/j.devcel.2010.11.005
McKnight, 2014, Neurosensory perception of environmental cues modulates sperm motility critical for fertilization, Science, 344, 754, 10.1126/science.1250598
Prasain, 2015, Comparative lipidomics of Caenorhabditis elegans metabolic disease models by swath non-targeted tandem mass spectrometry, Metabolites, 5, 677, 10.3390/metabo5040677
Pier, 2018, Comprehensive profiling of prostaglandins in human ovarian follicular fluid using mass spectrometry, Prostaglandins Other Lipid Mediat., 134, 7, 10.1016/j.prostaglandins.2017.11.001
Kahn-Kirby, 2004, Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo, Cell, 119, 889, 10.1016/j.cell.2004.11.005
O’Halloran, 2009, Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans, PLoS Genet., 5
Raabe, 2014, The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. Elegans, PLoS One, 9, 10.1371/journal.pone.0105999
Vasquez, 2014, Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation, Cell Rep., 6, 70, 10.1016/j.celrep.2013.12.012
Dancy, 2015, 13C- and 15N-Labeling strategies combined with mass spectrometry comprehensively quantify phospholipid dynamics in C. Elegans, PLoS One, 10, 10.1371/journal.pone.0141850
Chen, 2016, Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development inC. elegans revealed by molecular-selective label free imaging, Sci. Rep., 6, 32021, 10.1038/srep32021
Kim, 2013, Control of oocyte growth and meiotic maturation in Caenorhabditis elegans, 277
Nandakumar, 2008, Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity, PLoS Genet., 4, 10.1371/journal.pgen.1000273
Watts, 2006, Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. elegans, Dev. Biol. (Basel), 292, 381, 10.1016/j.ydbio.2006.01.013
O’Rourke, 2013, Omega-6 polyunsaturated fatty acids extend life span through the activation of autophagy, Genes Dev., 27, 429, 10.1101/gad.205294.112
Navarro-Herrera, 2018, Dihomo-gamma-linolenic acid induces fat loss in C. elegans in an omega-3-independent manner by promoting peroxisomal fatty acid β-oxidation, Food Funct., 9, 1621, 10.1039/C7FO01625E
Papsdorf, 2018, Linking lipid metabolism to chromatin regulation in aging, Trends Cell Biol., 1461, 1
Chen, 2019, Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy, Nat Com, 10, 2602, 10.1038/s41467-019-10475-8
Sugawara, 2013, Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation, J. Clin. Biochem. Nutr., 52, 139, 10.3164/jcbn.12-88
Amrit, 2016, DAF-16 and TCER-1 facilitate adaptation to germline loss by restoring lipid homeostasis and repressing reproductive physiology in C. elegans, PLoS Genet., 12
Qi, 2017, The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins, Aging Cell, 16, 1125, 10.1111/acel.12651
Ratnappan, 2014, Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans, PLoS Genet., 10, 10.1371/journal.pgen.1004829
Lee, 2016, Gain-of function alleles in Caenorhabditis elegans nuclear hormone receptor nhr-49 are functionally distinct, PLoS One, 11
Han, 2017, Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan, Nature, 544, 185, 10.1038/nature21686
Strünker, 2011, The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm, Nature, 471, 382, 10.1038/nature09769
Lishko, 2011, Progesterone activates the principal Ca2+channel of human sperm, Nature, 471, 387, 10.1038/nature09767
Edmonds, 2011, The gap junctional protein INX-14 functions in oocyte precursors to promote C. elegans sperm guidance, Dev. Biol., 359, 47, 10.1016/j.ydbio.2011.08.014
Grant, 1999, Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte, Mol. Biol. Cell, 10, 4311, 10.1091/mbc.10.12.4311
Watts, 2009, Fat synthesis and adiposity regulation in Caenorhabditis elegans, Trends Endocrinol. Metab., 20, 58, 10.1016/j.tem.2008.11.002
Zhou, 2015, Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans, J. Lipid Res., 56, 2110, 10.1194/jlr.M061887
Deline, 2013, Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans, J. Vis. Exp., 81, 50879