Synthesis and electrochemical performance of Li1+xTi2−xFex(PO4)3/C anode for aqueous lithium ion battery

Advanced Powder Technology - Tập 31 - Trang 1359-1364 - 2020
Weiwen Meng1, Cong Li1, Meng Yao1, Zhangxing He1,2, Xianwen Wu3, Zhen Jiang1, Lei Dai1,2, Ling Wang1,2
1School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
2Hebei Province Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, North China University of Science and Technology, Tangshan 063009, China
3School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China

Tài liệu tham khảo

Zhu, 2014, Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries, Adv. Powder Technol., 25, 342, 10.1016/j.apt.2013.05.015 Jiang, 2019, Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries, Electrochim. Acta, 322, 134754, 10.1016/j.electacta.2019.134754 Li, 2019, Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries, Ceram. Int., 45, 13530, 10.1016/j.ceramint.2019.04.059 Jiang, 2020, Superior lithium storage performance of hierarchical N-doped carbon encapsulated NaTi2(PO4)3 microflower, Ceram. Int., 46, 1954, 10.1016/j.ceramint.2019.09.174 Jiang, 2019, Synthesis and performance of a graphene decorated NaTi2(PO4)3/C anode for aqueous lithium-ion batteries, J. Alloy. Compd., 791, 176, 10.1016/j.jallcom.2019.03.289 Li, 2020, Enhanced properties of diatomite-based composite phase change materials for thermal energy storage, Renew. Energy, 147, 265, 10.1016/j.renene.2019.09.001 He, 2019, Codeposition of Nanocrystalline Co-Ni Catalyst Based on 1-ethyl-3-methylimidazolium Bisulfate and Ethylene Glycol System for Hydrogen Evolution Reaction, J. Electrochem. Soc., 166, D908, 10.1149/2.0171916jes Li, 2019, 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage, Renew. Energy, 140, 862, 10.1016/j.renene.2019.03.121 Li, 2020, Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode, Chem. Eng. J., 379, 122248, 10.1016/j.cej.2019.122248 Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J Wu, 2019, Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries, Solid State Ionics, 334, 48, 10.1016/j.ssi.2019.01.039 Yang, 2019, The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries, J. Electroanal. Chem., 832, 69, 10.1016/j.jelechem.2018.10.051 Han, 2020, Encapsulation of N-doped carbon layer via in situ dopamine polymerization endows nanostructured NaTi2(PO4)3 with superior lithium storage performance, Ceram. Int., 46, 4402, 10.1016/j.ceramint.2019.10.164 Bai, 2018, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int., 44, 7319, 10.1016/j.ceramint.2018.01.190 Han, 2015, Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries, Adv. Powder Technol., 26, 665, 10.1016/j.apt.2015.01.019 Sun, 2017, Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries, ACS Appl. Mater. Interfaces, 9, 52 Gan, 2018, Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes, ACS Appl. Mater. Interfaces, 10, 7031, 10.1021/acsami.7b13760 Zhen, 2018, Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite, Ceram. Int., 44, 15646, 10.1016/j.ceramint.2018.05.233 Wang, 2012, Recent progress in aqueous lithium-ion batteries, Adv. Energy Mater., 2, 830, 10.1002/aenm.201200065 Sun, 2016, Carbon-coated mesoporous LiTi2(PO4)3 nanocrystals with superior performance for lithium-ion batteries, Electrochim. Acta, 200, 66, 10.1016/j.electacta.2016.03.071 He, 2018, Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites, J. Alloy. Compd., 731, 32, 10.1016/j.jallcom.2017.10.038 Li, 1994, Lithium Intercalation from Aqueous Solutions, MRS Online Proc. Library Archive, 369, 2310 Wang, 2007, Aqueous rechargeable lithium battery (ARLB) based on LiVO and LiMnO with good cycling performance, Electrochem. Commun., 9, 1873, 10.1016/j.elecom.2007.04.017 Zhou, 2013, Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance, J. Power Sources, 227, 111, 10.1016/j.jpowsour.2012.11.022 He, 2016, Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries, Electrochim. Acta, 222, 1491, 10.1016/j.electacta.2016.11.128 Huang, 2015, Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance, J. Power Sources, 294, 650, 10.1016/j.jpowsour.2015.06.143 Wessells, 2011, Recent results on aqueous electrolyte cells, J. Power Sources, 196, 2884, 10.1016/j.jpowsour.2010.10.098 Luo, 2010, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2, 760, 10.1038/nchem.763 He, 2018, Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity, Chem. Eng. J., 345, 483, 10.1016/j.cej.2018.03.151 Vidal-Abarca, 2012, The influence of iron substitution on the electrochemical properties of Li1+xTi2−xFex(PO4)3/C composites as electrodes for lithium batteries, J. Mater. Chem., 22, 21602, 10.1039/c2jm34227h Li, 2019, Synthesis of LiNi1xCoxPO4/C nanocomposite cathode for lithium ion batteries by a combination of aerosol and powder technologies, Adv. Powder Technol., 30, 180, 10.1016/j.apt.2018.10.021 Liu, 2014, Synthesis of LiFePO4/C doped with Mg2+ by reactive extrusion method, Adv. Powder Technol., 25, 1339, 10.1016/j.apt.2014.03.013 Wang, 2005, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochim. Acta, 50, 2955, 10.1016/j.electacta.2004.11.045 Liu, 2015, Electrospun Sn-doped LiTi2(PO4)3/C nanofibers for ultra-fast charging and discharging, J. Mater. Chem. A, 3, 10395, 10.1039/C5TA00843C Aragón, 2014, High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3, J. Power Sources, 252, 208, 10.1016/j.jpowsour.2013.12.006