Synthesis and electrochemical performance of Li1+xTi2−xFex(PO4)3/C anode for aqueous lithium ion battery
Tài liệu tham khảo
Zhu, 2014, Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries, Adv. Powder Technol., 25, 342, 10.1016/j.apt.2013.05.015
Jiang, 2019, Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries, Electrochim. Acta, 322, 134754, 10.1016/j.electacta.2019.134754
Li, 2019, Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries, Ceram. Int., 45, 13530, 10.1016/j.ceramint.2019.04.059
Jiang, 2020, Superior lithium storage performance of hierarchical N-doped carbon encapsulated NaTi2(PO4)3 microflower, Ceram. Int., 46, 1954, 10.1016/j.ceramint.2019.09.174
Jiang, 2019, Synthesis and performance of a graphene decorated NaTi2(PO4)3/C anode for aqueous lithium-ion batteries, J. Alloy. Compd., 791, 176, 10.1016/j.jallcom.2019.03.289
Li, 2020, Enhanced properties of diatomite-based composite phase change materials for thermal energy storage, Renew. Energy, 147, 265, 10.1016/j.renene.2019.09.001
He, 2019, Codeposition of Nanocrystalline Co-Ni Catalyst Based on 1-ethyl-3-methylimidazolium Bisulfate and Ethylene Glycol System for Hydrogen Evolution Reaction, J. Electrochem. Soc., 166, D908, 10.1149/2.0171916jes
Li, 2019, 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage, Renew. Energy, 140, 862, 10.1016/j.renene.2019.03.121
Li, 2020, Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode, Chem. Eng. J., 379, 122248, 10.1016/j.cej.2019.122248
Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J
Wu, 2019, Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries, Solid State Ionics, 334, 48, 10.1016/j.ssi.2019.01.039
Yang, 2019, The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries, J. Electroanal. Chem., 832, 69, 10.1016/j.jelechem.2018.10.051
Han, 2020, Encapsulation of N-doped carbon layer via in situ dopamine polymerization endows nanostructured NaTi2(PO4)3 with superior lithium storage performance, Ceram. Int., 46, 4402, 10.1016/j.ceramint.2019.10.164
Bai, 2018, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int., 44, 7319, 10.1016/j.ceramint.2018.01.190
Han, 2015, Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries, Adv. Powder Technol., 26, 665, 10.1016/j.apt.2015.01.019
Sun, 2017, Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries, ACS Appl. Mater. Interfaces, 9, 52
Gan, 2018, Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes, ACS Appl. Mater. Interfaces, 10, 7031, 10.1021/acsami.7b13760
Zhen, 2018, Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite, Ceram. Int., 44, 15646, 10.1016/j.ceramint.2018.05.233
Wang, 2012, Recent progress in aqueous lithium-ion batteries, Adv. Energy Mater., 2, 830, 10.1002/aenm.201200065
Sun, 2016, Carbon-coated mesoporous LiTi2(PO4)3 nanocrystals with superior performance for lithium-ion batteries, Electrochim. Acta, 200, 66, 10.1016/j.electacta.2016.03.071
He, 2018, Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites, J. Alloy. Compd., 731, 32, 10.1016/j.jallcom.2017.10.038
Li, 1994, Lithium Intercalation from Aqueous Solutions, MRS Online Proc. Library Archive, 369, 2310
Wang, 2007, Aqueous rechargeable lithium battery (ARLB) based on LiVO and LiMnO with good cycling performance, Electrochem. Commun., 9, 1873, 10.1016/j.elecom.2007.04.017
Zhou, 2013, Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with good cycling performance, J. Power Sources, 227, 111, 10.1016/j.jpowsour.2012.11.022
He, 2016, Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries, Electrochim. Acta, 222, 1491, 10.1016/j.electacta.2016.11.128
Huang, 2015, Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance, J. Power Sources, 294, 650, 10.1016/j.jpowsour.2015.06.143
Wessells, 2011, Recent results on aqueous electrolyte cells, J. Power Sources, 196, 2884, 10.1016/j.jpowsour.2010.10.098
Luo, 2010, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2, 760, 10.1038/nchem.763
He, 2018, Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity, Chem. Eng. J., 345, 483, 10.1016/j.cej.2018.03.151
Vidal-Abarca, 2012, The influence of iron substitution on the electrochemical properties of Li1+xTi2−xFex(PO4)3/C composites as electrodes for lithium batteries, J. Mater. Chem., 22, 21602, 10.1039/c2jm34227h
Li, 2019, Synthesis of LiNi1xCoxPO4/C nanocomposite cathode for lithium ion batteries by a combination of aerosol and powder technologies, Adv. Powder Technol., 30, 180, 10.1016/j.apt.2018.10.021
Liu, 2014, Synthesis of LiFePO4/C doped with Mg2+ by reactive extrusion method, Adv. Powder Technol., 25, 1339, 10.1016/j.apt.2014.03.013
Wang, 2005, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochim. Acta, 50, 2955, 10.1016/j.electacta.2004.11.045
Liu, 2015, Electrospun Sn-doped LiTi2(PO4)3/C nanofibers for ultra-fast charging and discharging, J. Mater. Chem. A, 3, 10395, 10.1039/C5TA00843C
Aragón, 2014, High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3, J. Power Sources, 252, 208, 10.1016/j.jpowsour.2013.12.006