Synthesis and characterization of the graft copolymer PTFE-g-HEMA using gamma rays for the load and delivery of ciprofloxacin

Benito E. Ramírez-Flores1, Emilio Bucio1
1Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Autónoma de México, Mexico City, Mexico

Tóm tắt

AbstractThe aim of this study was to develop a drug delivery copolymer. Hydroxyethyl methacrylate (HEMA) was grafted onto poly(tetrafluoroethylene) films using gamma rays as the initiator agent. The optimal conditions for the grafting procedure were determined through a series of experiments, considering the following factors: reaction time, temperature, HEMA concentration, solvent type, and gamma-ray doses. Grafting was accomplished using the oxidative-pre-irradiation method. The resulting copolymer was subjected to various characterizations, including thermal analysis (TGA and DSC), FTIR-ATR spectroscopy, contact angle measurements, and assessment of physicochemical properties. Additionally, its ability to load and release ciprofloxacin was evaluated. Graphical abstract

Từ khóa


Tài liệu tham khảo

D.K. Mandal, H. Bhunia, P.K. Bajpai et al., Optimization of acrylic acid grafting onto polypropylene using response surface methodology and its biodegradability. Radiat. Phys. Chem. 132, 71–81 (2017). https://doi.org/10.1016/J.RADPHYSCHEM.2016.12.003

S. Yang, K.-F. Leong, D. Zhaohui, The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2001). https://doi.org/10.1089/107632701753337645

W.C. Reygaert, An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4(3), 482–501 (2018). https://doi.org/10.3934/microbiol.2018.3.482

J. Khandare, T. Minko, Polymer–drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. 31(4), 359–397 (2006). https://doi.org/10.1016/J.PROGPOLYMSCI.2005.09.004

G.B. Heggannavar, D. Achari, C. Fernandes, G. Mitchell, P. Morouço, M.Y. Kariduraganavar, Smart polymers in drug delivery applications. Publ. online (2019). https://doi.org/10.4028/www.scientific.net/AMM.890.324

N. Seedat, R.S. Kalhapure, C. Mocktar et al., Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: in vitro and in silico studies. Mater. Sci. Eng. C 61, 616–630 (2016). https://doi.org/10.1016/J.MSEC.2015.12.053

E. Bucio, G. Burillo, Radiation-induced grafting of sensitive polymers. J. Radioanal. Nucl. Chem. 280(2), 239–243 (2009). https://doi.org/10.1007/s10967-009-0505-9

A.F. Saad, M.H. Ibraheim, A.M. Nwara, S.A. Kandil, Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation. Radiat. Phys. Chem. 145, 122–129 (2018). https://doi.org/10.1016/J.RADPHYSCHEM.2017.10.011

Y.S. Ramírez-Fuentes, E. Bucio, G. Burillo, Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 265(1), 183–186 (2007). https://doi.org/10.1016/j.nimb.2007.08.046

Y. Kodama, M. Barsbay, O. Güven, Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: synthesis, characterization and benefits of RAFT mediation. Radiat. Phys. Chem. 105, 31–38 (2014). https://doi.org/10.1016/J.RADPHYSCHEM.2014.05.023

A.R. Hernández-Martínez, E. Bucio, Novel pH- and temperature-sensitive behavior of binary graft DMAEMA/PEGMEMA onto LDPE membranes. Des. Monomers Polym. 12(6), 543–552 (2009). https://doi.org/10.1163/138577209X12478293300757

J.G. Drobny, Technology of fluoropolymers, 2nd edn. (Taylor and Francis Group, Berlin, 2009)

J. Lochab, V.R. Singh, Acoustic behaviour of plastics for medical applications. Indian J. Pure Appl. Phys. 42, 595–599 (2004)

J. Park, R.S. Lakes, Biomaterials: an introduction, 3rd edn. (Springer Science + Business Media LIC, Berlin, 2007)

S. Rattan, T. Sehgal, Stimuli-responsive membranes through peroxidation radiation-induced grafting of 2-hydroxyethyl methacrylate (2-HEMA) onto isotactic polypropylene film (IPP). J. Radioanal. Nucl. Chem. 293(1), 107–118 (2012). https://doi.org/10.1007/s10967-012-1728-8

S.L. Tomić, M.M. Mićić, S.N. Dobić, J.M. Filipović, E.H. Suljovrujić, Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat. Phys. Chem. 79(5), 643–649 (2010). https://doi.org/10.1016/J.RADPHYSCHEM.2009.11.015

K. Sudhakar, K. Madhusudana Rao, M.C.S. Subha, K. Chowdoji Rao, E.R. Sadiku, Temperature-responsive poly(N -vinylcaprolactam-co-hydroxyethyl methacrylate) nanogels for controlled release studies of curcumin. Des. Monomers Polym. 18(8), 705–713 (2015). https://doi.org/10.1080/15685551.2015.1070497

Y. Guadarrama-Zempoalteca, L. Díaz-Gómez, H.I. Meléndez-Ortiz, A. Concheiro, C. Alvarez-Lorenzo, E. Bucio, Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiat. Phys. Chem. 126, 1–8 (2016). https://doi.org/10.1016/j.radphyschem.2016.04.023

A. Khan, T. Huq, R.A. Khan, D. Dussault, S. Salmieri, M. Lacroix, Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films. Radiat. Phys. Chem. 81(8), 941–944 (2012). https://doi.org/10.1016/J.RADPHYSCHEM.2011.11.056

L.M. Ferreira, J.P. Leal, P.A. Rodrigues, L.C. Alves, A.N. Falcão, M.H. Gil, Characterization of PE-g-HEMA films prepared by gamma irradiation through nuclear microprobe techniques. Radiat. Phys. Chem. 81(9), 1319–1323 (2012). https://doi.org/10.1016/J.RADPHYSCHEM.2012.01.045

G. González-Hernández, V.H. Pino-Ramos, L. Islas, C. Alvarez-Lorenzo, A. Concheiro, E. Bucio, Radiation-grafting of N-vinylcaprolactam and 2-hydroxyethyl methacrylate onto polypropylene films to obtain a thermo-responsive drug delivery system. Radiat. Phys. Chem. 2019(157), 6–14 (2017). https://doi.org/10.1016/j.radphyschem.2018.12.014

S. Cabana, C.S. Lecona-Vargas, H.I. Meléndez-Ortiz et al., Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy. J. Drug Deliv. Sci. Technol. 42, 245–254 (2017). https://doi.org/10.1016/j.jddst.2017.04.006

W.A. Eckert, D. Groöbe, U. Rothe, Surface-modification of polystyrene-microtitre plates via grafting of glycidylmethacrylate and coating of poly-glycidylmethacrylate. Biomaterials 21(5), 441–447 (2000). https://doi.org/10.1016/S0142-9612(99)00098-8

Y.A.E. Lozano, Injerto de Metacrilato de Metilo y 2-(Dietilamino) Etil Metacrilato En Películas de Politetrafluoroetileno Mediante Radiación Ionizante (Universidad Nacional Autonoma de México, Mexico City, 2019)

S.A.V. Lozada, Síntesis de Copolímeros de Injerto En Películas de Politetrafluoroetileno Con Ácido Acrílico, Ácido Metacrílico y 4-Vinilpiridina (Universidd Nacional Autonoma de México, Mexico City, 2019)

N. Xu, M. Ren, H. Cheng, Sol-modified sintering-induced mesoporous polytetrafluoroethylene/poly (acrylic acid-co-hydroxyethyl methacrylate) composite fiber as an adsorbent with high adsorption capacity for dyes. Mater. Chem. Phys. 272, 124988 (2021). https://doi.org/10.1016/j.matchemphys.2021.124988

H. Sahabudeen, R. Machatschek, A. Lendlein, Thermal behavior of poly(2-hydroxyethyl methacrylate-bis-[trimethoxysilylpropyl]amine) networks. IOP Conf. Ser. (2013). https://doi.org/10.1088/1757-899X/45/1/012005