Tổng hợp và đặc trưng hóa các polybenzoxazin nhiệt rắn mới với các nhóm chức năng khác trong mạng lưới

Springer Science and Business Media LLC - Tập 25 - Trang 1-12 - 2018
E. Gilbert1, M. E. Taverna1,2, M. F. Dieser1, G. Morales3, M. Spontón1, D. Estenoz1
1INTEC (Universidad Nacional del Litoral - CONICET), Santa Fe, Argentina
2GPol, Facultad Regional San Francisco, Universidad Tecnológica Nacional, San Francisco, Argentina
3Centro de Investigación en Química Aplicada - CIQA, Saltillo, Mexico

Tóm tắt

Trong nghiên cứu này, các hệ thống nhiệt rắn hiệu suất cao mới dựa trên benzoxazin đa chức năng đã được phát triển. Đầu tiên, các monome 3-(2-hydroxyethyl)-3,4-dihydro-2H-1,3-benzoxazine (BzOH) và bis(3-(2-hydroxyethyl)-3,4-dihydro-2H-1,3-benzoxazinyl) isopropane (BzPOH) đã được tổng hợp bằng phản ứng giữa phenol hoặc bisphenol A, paraformaldehyde và ethanolamine. Sau đó, BzOH và BzPOH đã được chức năng hóa với anhydrit maleic sử dụng tỉ lệ định lượng của oxazine: anhydrit maleic (1:1) để sản xuất các dạng có khối lượng phân tử thấp với các nhóm axit carboxylic, được đặt tên là BzFA và BzPFA. Các sản phẩm đã được đặc trưng hóa bằng Phổ Resonance Hạt nhân (NMR), Máy sắc ký loại trừ kích thước (SEC), và Phổ hồng ngoại biến đổi Fourier (FTIR). BzFA và BzPFA có khối lượng phân tử trung bình trọng lượng lần lượt là 5000 g.mol−1 và 50.000 g.mol−1. Các hỗn hợp giữa các tiền chất mới và benzoxazin thông thường (BzBA) được lấy từ bisphenol A và anilin [bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) isopropane] đã được chuẩn bị. Quá trình đóng rắn đã được nghiên cứu bằng FTIR và Đo nhiệt lượng quét khác biệt (DSC), và các tính chất viscoelastic, cơ học, nhiệt và hình thái của vật liệu cũng đã được đánh giá. Các vật liệu thu được cho thấy các tính chất nhiệt, viscoelastic và cơ học tốt hơn so với polybenzoxazin thông thường. Các phép đo Kính hiển vi điện tử quét (SEM) cho thấy bề mặt vật liệu đồng nhất.

Từ khóa


Tài liệu tham khảo

Li S, Yang C, Li C, Yan S (2017) Synthesis, characterization of new bisphenol-based benzoxazines and the thermal properties of their polymers. J Therm Anal Calorim 128:1711–1717. https://doi.org/10.1007/s10973-017-6099-5 Allen DJ, Ishida H (2006) Physical and mechanical properties of flexible polybenzoxazine resins: Effect of aliphatic diamine chain length. J Appl Polym Sci 101:2798–2809. https://doi.org/10.1002/app.22501 Fonseca Costa e Silva S, Machado Araújo A, Bittencourt E (2015) Effect of the fiber orientation relatively to the plasma flow direction in the ablation process of a carbon-phenolic composite. J Aerosp Technol Manag 7:43–52. https://doi.org/10.5028/jatm.v7i1.437 Sponton M, Estenoz D, Lligadas G et al (2012) Synthesis and characterization of a hybrid material based on a trimethoxysilane functionalized benzoxazine. J Appl Polym Sci 126:1369–1376. https://doi.org/10.1002/app.36766 Kimura H, Ohtsuka K, Matsumoto A (2011) Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin. Express Polym Lett 5:1113–1122. https://doi.org/10.3144/expresspolymlett.2011.108 Gietl T, Lengsfeld H, Altstädt V (2006) The efficiency of various toughening agents in novel phenolic type thermoset resin systems. J Mater Sci 41:8226–8243. https://doi.org/10.1007/s10853-006-0879-9 Zhang L, Wang M, Wu J (2016) Study on an amine-containing benzoxazine: Homo- and copolymerization with epoxy resin. Express Polym Lett 10:617–626. https://doi.org/10.3144/expresspolymlett.2016.56 Ishida H, Allen D (1996) Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci B Polym Phys 34:1019–1030. https://doi.org/10.1002/(SICI)1099-0488(19960430)34:6<1019::AID-POLB1>3.0.CO;2-T Kimura H, Matsumoto A, Ohtsuka K (2008) Studies on new type of phenolic resin — curing reaction of bisphenol-a-based benzoxazine with epoxy resin using latent curing agent and the properties of the cured resin. J Appl Polym Sci 109:1248–1256. https://doi.org/10.1002/app.28279 Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391. https://doi.org/10.1016/j.progpolymsci.2007.07.002 Andreu R, Reina JA, Ronda JC (2008) Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines. J Polym Sci A Polym Chem:6091–6101. https://doi.org/10.1002/pola Ishida H, Ohba S (2005) Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 46:5588–5595. https://doi.org/10.1016/j.polymer.2005.04.080 Holly W, Cope C (1944) Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J Am Chem Soc 66:1875–1879. https://doi.org/10.1021/ja01239a02 Brunovska Z, Ishida H (1999) Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines. J Appl Polym Sci 73:2937–2949. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2937::AID-APP18>3.0.CO;2-E Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 36:6010–6017. https://doi.org/10.1021/ma021775q Agag T, Takeichi T (2001) Novel benzoxazine monomers containing p -phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules 34:7257–7263. https://doi.org/10.1021/ma0107915 Ishida H, Low HY (1997) A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 30:1099–1106. https://doi.org/10.1021/ma960539a Ishida H, Rodriguez Y (1995) Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 36:3151–3158. https://doi.org/10.1016/0032-3861(95)97878-J Kiskan B, Yagci Y (2008) Synthesis and characterization of thermally curable polyacetylenes by polymerization of propargyl benzoxazine using rhodium catalyst. Polymer 49:2455–2460. https://doi.org/10.1016/j.polymer.2008.03.031 Liu J, Scott C, Winroth S et al (2015) Copolymers based on telechelic benzoxazine with a reactive main-chain and anhydride: monomer and polymer synthesis, and thermal and mechanical properties of carbon fiber composites. RSC Adv 5:16785–16791. https://doi.org/10.1039/C4RA12086H Takeichi T, Saito Y, Agag T et al (2008) High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49:1173–1179. https://doi.org/10.1016/j.polymer.2008.01.041 Cao H, Xu R, Yu D (2008) Synthesis and Characterization of 2-Oxazoline- benzoxazine Compound and its Polymer. J Appl Polym Sci 110:1502–1508. https://doi.org/10.1002/app.27787 Spontón M, Ronda JC, Galià M, Cádiz V (2008) Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl) methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polym Degrad Stab 93:2158–2165. https://doi.org/10.1016/j.polymdegradstab.2008.08.004 Spontón M, Ronda JC, Galià M, Cádiz V (2009) Development of flame retardant phosphorus- and silicon-containing polybenzoxazines. Polym Degrad Stab 94:145–150. https://doi.org/10.1016/j.polymdegradstab.2008.11.017 Kiskan B, Koz B, Yagci Y (2009) Synthesis and Characterization of Fluid 1,3-Benzoxazine Monomers and Their Thermally Activated Curing. J Polym Sci A Polym Chem 47(24):6955–6961. https://doi.org/10.1002/pola.23735 Kudoh R, Sudo A, Endo T (2010) A Highly Reactive Benzoxazine Monomer, 1-(2-hydroxyethyl)-1,3-Benzoxazine: Activation of Benzoxazine by Neighboring Group Participation of Hydroxyl Group. Macromolecules 43(3):1185–1187. https://doi.org/10.1021/ma902416h Soto M, Hiller M, Oschkinat H, Koschek K (2016) Multifunctional benzoxazines feature low polymerization temperature and diverse polymer structures. Polymers 8:278. https://doi.org/10.3390/polym8080278 Kumar KSS, Nair CPR, Sadhana R, Ninan KN (2007) Benzoxazine – bismaleimide blends : Curing and thermal properties. Eur Polym J 43:5084–5096. https://doi.org/10.1016/j.eurpolymj.2007.09.012 Gacal B, Cianca L, Agag T et al (2007) Synthesis and characterization of maleimide (co)polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. J Polym Sci A Polym Chem 45:2774–2786. https://doi.org/10.1002/pola.22034 Espinosa M, Galià M, Cádiz V (2004) Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer 45:6103–6109. https://doi.org/10.1016/j.polymer.2004.07.002 Rimdusit S, Ishida H (2000) Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 41:7941–7949. https://doi.org/10.1016/S0032-3861(00)00164-6 Tuzun A, Kiskan B, Alemdar N, Erciyes AT, Yagci Y (2010) Benzoxazine Containing Polyester Thermosets with Improved Adhesion and Flexibility. J Polym Sci A Polym Chem 48(19):4279–4284. https://doi.org/10.1002/pola.24215 Brunovska Z, Liu JP, Ishida H (1999) 1,3,5-Triphenylhexahydro-1,3,5-triazine - active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol Chem Phys 200:1745–1752. https://doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1745::AID-MACP1745>3.0.CO;2-D Li S, Zou T (2011) Synthesis, Characterization of New Carboxylic Acid-Containing Benzoxazine and Its Cocuring Behaviors with Bisoxazoline. J Appl Polym Sci. https://doi.org/10.1002/app.34535 Tiptipakorn S, Punuch W, Okhawilai M, Rimdusit S (2015) Property enhancement of polybenzoxazine modified with monoanhydrides and dianhydrides. J Polym Res 22(7):132. https://doi.org/10.1007/s10965-015-0771-x