Synthesis and characterization of maghemite nanopowders by chemical precipitation method

Mousa Nazari1, Nahid Ghasemi2, Heydar Maddah2, Mohammad Mousavi Motlagh1
1Department of Engineering, Mosem Research Center, Emam Hossein University, Tehran, Iran
2Department of Chemistry, Sciences Faculty, Arak Branch, Islamic Azad University, Arāk, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. Wiley, Weinheim (2003)

Ray, I., Chakraborty, S., Chowdhury, A., Majumdar, S., Prakash, A., Pyare, R., Sen, A.: Room temperature synthesis of γ-Fe2O3 by sonochemical route and its response towards butane. Sens. Actuators B 130, 882–888 (2008)

Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., von Rechenberg, B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293(1), 483–496 (2005)

Ensling, J., Gütlich, P., Klinger, R., Meisel, W., Jachow, H., Schwab, E.: Magnetic pigments for recording media. Hyperfine Interact. 111(1–4), 143–150 (1998)

Büscher, K., Helm, C.A., Gross, C., Glöckl, G., Romanus, E., Weitschies, W.: Langmuir 20, 2435 (2004)

Kiemle, P., Wiese, J., Buxbaum, G.: Process for the production of iron oxides epitaxially coated with cobalt, the coated oxides and their cue. US Patent No. 652214

Pope, N.M., Alsop, R.C., Chang, Y.A., Smith, A.K.: Evaluation of magnetic alginate beads as a solid support for positive selection of CD34 + cells. J. Biomed. Mater. Res. 28, 449–457 (1994)

Jing, Z., Wang, Y., Wu, S.: Sens. Actuator B 113, 177 (2006)

Liao, M., Chen, D.: Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem. 12, 3654–3659 (2002)

Jing, Z., Wu, S.: Synthesis, characterization and gas sensing properties of undoped and Co-doped-Fe2O3-based gas sensors. Mater. Lett. 60, 952–956 (2006)

Liu, Y., Zhu, W., Tan, O.K., Shen, Y.: Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition. Mater. Sci. Eng. B 47, 171–176 (1997)

Lim, I.S., Jang, G.E., Kim, C.K., Yoon, D.H.: Fabrication and gas sensing characteristics of pure and Pt-doped-Fe2O3 thin film. Sens. Actuators B 77, 215–220 (2001)

Wang, J., Tong, M., Wang, X., Ma, Y., Liu, D., Wu, J., Gao, D., Du, G.: Preparation of H2 and LPG gas sensor. Sens. Actuators B 84, 95–97 (2002)

Mørup, S., Tronc, E.: Superparamagnetic relaxation of weakly interacting particles. Phys. Rev. Lett. 72, 3278 (1994)

Sinha, A., Chakraborty, J., Rao, V.: Process for preparing nanosized acicular magnetic maghemite phase iron oxide particles. European Patent EP1559118

Nagano, H., Machida, Y., Iwata, M., Imada, T., Noguchi, Y., Matsumoto, A., Nagai, T.: Preparation of magnetic granules containing bleomycin and its evaluation using model esophageal cancer. Int. J. Pharm. 147, 119–125 (1997)

Billotey, C., Wilhelm, C., Devaud, M., Bacrij, C., Bittoun, J., Gazeau, F.: Medical cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn. Reson. Med. 49, 646–654 (2003)

Rostovshchikova, T.N., Kiseleva, O.I., Smirnov, V.V., Maksimov, Y.V., Suzdalev, I.P., Prusakov, V.E., Tsodikov, M.V., Ikorskiid, V.N.: Catalytic conversions of chloroolefines over iron oxide nanoparticles 3. Electronic and magnetic properties of γ-Fe2O3 nanoparticles immobilized on different silicas. Russ. Chem. Bull. Int. 55, 1768–1774 (2006)

Dutta, A.K., Maji, S.K., Adhikary, B.: γ-Fe2O3nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater. Res. Bull. 49, 28–34 (2014)

Ortega, D., Garitaonandia, J.S., Barrera-Solano, C., Ramírez-del-Solar, M., Blanco, E., Domínguez, M.: γ-Fe2O3/SiO2 nanocomposites for magneto-optical applications: nanostructural and magnetic properties. J. Non-Cryst. Solids 352, 2801–2810 (2006)

Pierson, H.O.: Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications. William Andrew Inc (1999)

Teja, A.S., Koh, P.Y.: Synthesis: properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)

Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., Kim, J.D.: Impedance spectra of field-aligned CF02 needle-shape powders. J. Magn. Magn. Mater. 282, 147 (2004)

Darezereshki, E.: Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater. Lett. 64, 1471–1472 (2010)

Layek, S., Pandey, A., Pandey, A., Verma, H.C.: Synthesis of γ-Fe2O3 nanoparticles with crystallographic and magnetic texture. Int. J. Eng. Sci. Technol. 2(8), 33–39 (2010)

da Costa, G.M., De Grave, E., de Bakker, P.M.A., Vandenberghe, R.E.: Synthesis and characterization of some iron oxides by sol-gel method. J. Solid State Chem. 113, 405–412 (1994)

Cui, H., Ren, W.: Low temperature and size controlled synthesis of monodispersed γ-Fe2O3 nanoparticles by an epoxide assisted sol–gel route. J. Sol Gel Sci. Technol. 47, 81–84 (2008)

Cui, H., Liu, Y., Ren, W.: Structure switch between a-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 24, 93–97 (2013)

Chin, A.B., Yaacob, I.I.: Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J. Mater. Process. Technol. 191, 235–237 (2007)

Alvarez, G.S., Muhammed, M., Zagorodni, A.A.: Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 61, 4625–4633 (2006)

Liu, T., Guo, L., Tao, Y.: Synthesis and interfacial structure of nanoparticles γ-Fe2O3 coated with surfactant DBS and CTAB. Nanostruct. Mater. 11, 487–492 (1999)

Islam, M.S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamuna, M., Bin Mukhlish, M.Z.: Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoparticles. J. Sci. Res. 4(1), 99–107 (2012)

Strobel, R., Pratsinis, S.E.: Direct synthesis of maghernite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Tech. 20, 190 (2009)

Cao, S.-W., Zhu, Y.-J., Zeng, Y.-P.: Formation of γ-Fe2O3 hierarchical nanostructures at 500 °C in a high magnetic field. J. Magn. Magn. Mater. 321, 3057–3060 (2009)

Chakrabarti, S., Ganguli, D., Chaudhuri, S.: Optical properties of γ-Fe2O3 nanoparticles dispersed on sol-gol silica spheres. J. Physica. E 24, 333 (2004)

Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M., Lim, H.N.: Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram. Int. 36(4), 1417–1422 (2010)

Lee, Y., Jun, K., Park, J., Potdar, H., Chikate, R.: A simple chemical route for the synthesis of γ-Fe2O3 nano-particles dispersed in organic solvents via an iron-hydroxy oleate precursor. J. Ind. Eng. Chem. 14, 38–44 (2008)

Tuutijarvi, T., Vahala, R., Sillanpaa, M., Chen, G.: Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ. Technol. 33(16), 1927–1936 (2012)

Akhbarizadeh, R., Shayestefar, M.R., Darezereshk, E.: Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine. Water Environ. 33, 89–96 (2014)