Synthesis and characterization of dielectric, electric, and magnetic properties of vanadium doped-bismuth europium ferrites for multiferroic applications

Results in Physics - Tập 50 - Trang 106571 - 2023
T. Ahamed1, A. Ahad1, Mithun Kumar Das1, M.A. Taher1, Mohammad J. Miah1, M.N.I. Khan2
1Department of Physics, Comilla University, Cumilla 3506, Bangladesh
2Materials Science Division, Atomic Energy Center, Dhaka, 1000, Bangladesh

Tài liệu tham khảo

Spaldin, 2017, ‟Multiferroics: from the cosmically large to the subatomically small”, Nat Rev Mater, 2, 1, 10.1038/natrevmats.2017.17 Zhang, 2009, ‟Phase evolution and magnetic property of Bi1−xDyxFeO3 ceramics”, Mater Lett, 21, 1820, 10.1016/j.matlet.2009.05.056 Hu, 2009, ‟Enhanced multiferroic properties of BiFeO3 thin films by Nd and high-valence Mo co-doping”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/18/185010 Gao, 2018, Chunling Fu1, “Strong Magnetoelectric Coupling Effect in BaTiO3@CoFe2O4 Magnetoelectric Multiferroic Fluids”, Nanoscale, 10, 11750, 10.1039/C8NR02368A Gao, 2019, Enhancement of magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4+xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics, J Alloys Compd, 795, 501, 10.1016/j.jallcom.2019.05.013 Wang, 2010, ‟Multiferroic magnetoelectric composite nanostructures”, NPG Asia Mater, 2, 61, 10.1038/asiamat.2010.32 Fiebig, 2005, ‟Revival of the magnetoelectric effect”, J Phys D Appl Phys, 38, R123, 10.1088/0022-3727/38/8/R01 Catalan, 2009, ‟Physics and applications of bismuth ferrite”, Adv Mater, 21, 2463, 10.1002/adma.200802849 Hill, 2000, ‟Why are there so few magnetic ferroelectrics?”, J Phys Chem B, 104, 6694, 10.1021/jp000114x Smolensky, 1961, ‟New ferroelectrics of complex composition”, IV Sov Phys-Solid State, 2, 2651 Wang, 2020, ‟Structure, performance, and application of BiFeO3 nanomaterials”, Nano-Micro Letters, 12, 1, 10.1007/s40820-020-00420-6 Neaton, 2005, ‟First-principles study of spontaneous polarization in multiferroic BiFeO3”, Phys Rev B, 71, 10.1103/PhysRevB.71.014113 Sosnowska, 1982, ‟Spiral magnetic ordering in bismuth ferrite”, J Phys C Solid State Phys, 15, 4835, 10.1088/0022-3719/15/23/020 Kaczmarek, 1975, ‟Differential thermal analysis of phase transitions in (Bi1−xLax) FeO3 solid solution”, Solid State Commun, 17, 807, 10.1016/0038-1098(75)90726-7 Yang, 2012, ‟A unique magnetic behavior and dielectric properties of Bi0.9–xLa0.1CaxFeO3 nanoparticles at room temperature”, J Phys Chem Solid, 73, 115, 10.1016/j.jpcs.2011.10.021 Bai, 2016, ‟Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles”, J Phys Chem C, 120, 3595, 10.1021/acs.jpcc.5b09945 Gao, 2014, Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 sandwiched capacitors, Appl Phys Lett, 104, 10.1063/1.4862793 Kuang, 2016, ‟Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films”, J Alloys Compd, 671, 192, 10.1016/j.jallcom.2016.02.081 Zhou, 2015, ‟Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by sol-gel technique”, Mater Lett, 144, 93, 10.1016/j.matlet.2015.01.038 Pradhan, 2005, ‟Magnetic and electrical properties of single-phase multiferroic BiFeO3”, J Appl Phys, 97, 10.1063/1.1881775 Wang, 2004, ‟Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl Phys Lett, 84, 1731, 10.1063/1.1667612 Kumar, 2000, ‟Ferroelectricity in a pure BiFeO3 ceramic”, Appl Phys Lett, 76, 2764, 10.1063/1.126468 Anjum, 2010, ‟Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3(0.0≤x≤0.4) multiferroics”, J Appl Phys, 107, 10.1063/1.3386527 Sun, 2015, ‟Phase transition and piezoelectricity of sol–gel-processed Sm-doped BiFeO3 thin films on Pt (111)/Ti/SiO2/Si substrates”, J Mater Chem C, 3, 2115, 10.1039/C4TC02886D Vanga, 2015, ‟Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles”, Mater Sci Semicond Process, 40, 796, 10.1016/j.mssp.2015.07.078 Mao, 2014, ‟Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles”, J Alloys Compd, 584, 520, 10.1016/j.jallcom.2013.09.117 Mao, 2016, ‟Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles”, PCCP, 18, 6399, 10.1039/C5CP07327H Dai, 2014, ‟Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics”, Ceram Int, 40, 15617, 10.1016/j.ceramint.2014.07.080 Tan, 2015, A comparative study on the magnetic and electrical properties of Bi0.89Tb0.11FeO3 and Bi0.89Tb0.11FeO3/CoFe2O4 multiferroic thin films, J Alloys Compd, 623, 243, 10.1016/j.jallcom.2014.10.129 Kim, 2009, ‟Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics”, J Magn Magn Mater, 321, 3262, 10.1016/j.jmmm.2009.05.059 Kumar, 2006, ‟Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system”, J Appl Phys, 100, 10.1063/1.2349491 Jun, 2007, ‟Dielectric and magnetic properties in Co-and Nb-substituted BiFeO3 ceramics”, Solid State Commun, 144, 329, 10.1016/j.ssc.2007.08.029 Lahmar, 2009, Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films, Appl Phys Lett, 94, 10.1063/1.3064954 Gowrishankar, 2016, ‟Effect of Gd–Ti co-substitution on structural, magnetic and electrical properties of multiferroic BiFeO3”, J Magn Magn Mater, 418, 54, 10.1016/j.jmmm.2016.03.085 Das, 2023, Rietveld refined crystal structure, magnetic, dielectric, and electric properties of Li- substituted Ni–Cu–Zn ferrite and Sm, Dy co-doped BaTiO3 multiferroic composites, Ceram Int, 49, 6045, 10.1016/j.ceramint.2022.11.142 Mao, 2012, ‟Structural and magnetic properties of single-phase Bi0.9Eu0.1Fe0.95Co0.05O3 and Bi0.9Eu0.05La0.05Fe0.95Co0.05O3 nanoparticles”, Mater Lett, 76, 135, 10.1016/j.matlet.2012.02.082 Chakrabarti, 2012, ‟Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles”, Appl Phys Lett, 101, 10.1063/1.4738992 Das Mithun Kumar, 2020, An experimental insight of the multiferroic properties of magnetoelectrically coupled xLNCZFO+(1−x)BSTDO composites, J Magn Magn Mater, 502, 166449, 10.1016/j.jmmm.2020.166449 Arya, 2013, ‟Enhanced magnetic properties of Sm and Mn co-doped BiFeO3 nanoparticles at room temperature”, Mater Lett, 93, 341, 10.1016/j.matlet.2012.11.131 Godara, 2015, ‟Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles”, Ceram Int, 41, 6912, 10.1016/j.ceramint.2015.01.145 Das, 2020, Study of impedance and magnetoelectric property of lead-free xLCNZFO+ (1–x)BGTDO multiferroic composites, Mater Chem Phys, 255, 123575, 10.1016/j.matchemphys.2020.123575 Vijayasundaram, 2016, ‟Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles”, J Alloys Compd, 658, 726, 10.1016/j.jallcom.2015.10.250 Yu, 2008, ‟Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics”, J Phys D Appl Phys, 41, 10.1088/0022-3727/41/6/065003 Babar, 2010, ‟Structural and optoelectronic properties of antimony incorporated tin oxide thin films”, J Alloys Compd, 505, 416, 10.1016/j.jallcom.2010.06.091 Goldman, 1999, Basics of magnetism-source of magnetic effect, vol. 505, 17 Vanga, 2016, ‟Sol-gel synthesis and characterization of (Nd, Cr) co-doped BiFeO3 nanoparticles”, J Exp Nanosci, 11, 1348, 10.1080/17458080.2016.1218556 Kumar, 2008, ‟Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics”, Mater Lett, 62, 1159, 10.1016/j.matlet.2007.07.075 Suresh, 2014, ‟A comparative study of sol-gel and solid-state prepared La3+ doped multiferroic BiFeO3”, Adv Mater Lett, 5, 127, 10.5185/amlett.2013.fdm.34 Denton, 1991, Vegard’s law, Phys Rev A, 3161, 10.1103/PhysRevA.43.3161 Palkar, 2003, ‟Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system”, J Appl Phys, 93, 4337, 10.1063/1.1558992 Hossain, 2012, ‟Influence of Li substitution on structural and magnetic properties of LixNi0.2Mg0.8−2xFe2+xO4”, Mater Chem Phys, 133, 941, 10.1016/j.matchemphys.2012.01.120 Fki, 2017, ‟Influence of Y doping on structural, vibrational, optical, and magnetic properties of BiFeO3 ceramics prepared by Mechanical Activation”, Ceram Int, 43, 4139, 10.1016/j.ceramint.2016.12.028 Bhushan, 2009, ‟Effect of alkaline earth metal doping on thermal, optical, magnetic, and dielectric properties of BiFeO3 nanoparticles”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/6/065004 Gautam, 2010, ‟Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite”, Cryst Res Technol, 45, 953, 10.1002/crat.201000050 Raghavan, 2013, ‟Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film”, Ceram Int, 39, 3563, 10.1016/j.ceramint.2012.10.182 Ahad, 2019, ‟Effect of Y substitution on magnetic and transport properties of Ba0.95La0.05Ti1-xYxO3 ceramics”, Results Phys, 12, 1925, 10.1016/j.rinp.2019.01.072 Dana, 1922, A textbook of mineralory: with an extended treatise on crystallography, 316, 195 Xu, 2014, ‟Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3”, J Alloys Compd, 587, 308, 10.1016/j.jallcom.2013.10.174 Jaffari, 2015, ‟Effect of A and B-site substitution with Pb, La, and Ti on phase stabilization and multiferroic properties of BiFeO3”, J Alloys Compd, 644, 893, 10.1016/j.jallcom.2015.05.065 Kim, 2010, ‟Multiferroic properties of Ti-doped BiFeO3 ceramics”, J Korean Phys Soc, 56, 439, 10.3938/jkps.56.439 Zhi, 1999, ‟Incorporation of yttrium in barium titanate ceramics”, J Am Ceram Soc, 82, 1345, 10.1111/j.1151-2916.1999.tb01921.x Liu, 2004, Hardy, ‟Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12”, Physics Reviews B, 70, 10.1103/PhysRevB.70.144106 Matin MA, Hossain MN, Rizvi MH, Zubair MH, Hakim MA, Hussain A, Islam MF. Enhancing magnetoelectric and optical properties of co-doped bismuth ferrite multiferroic nanostructures. In: 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC); 2017. p. 1–7. Gaoa, 2019, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics, Compos B, 166, 204, 10.1016/j.compositesb.2018.12.010 Gao, 2018, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites, Ceram Int, 44, S84, 10.1016/j.ceramint.2018.08.234 Gao, 2019, A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics, Mater Chem Phys, 232, 428, 10.1016/j.matchemphys.2019.05.016 Anwar, 2020, Influence of Mn2+ substitution on structural, morphological, electrical, and magnetic properties of Ba0.4Ca0.4Sr0. 2MnxTi1−xO3 perovskites, AIP Adv, 10, 10.1063/5.0003294 Mohapatra, 2016, ‟Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics”, Ceram Int, 42, 12352, 10.1016/j.ceramint.2016.05.008 Nadeem, 2018, ‟Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping”, J Appl Phys, 124, 10.1063/1.5050946 Matin, 2019, ‟Enhanced dielectric properties of prospective Bi0.85Gd0.15Fe1−xCrxO3 multiferroics”, Results Phys, 12, 1653, 10.1016/j.rinp.2019.01.079 Bidault, 1994, Space-charge relaxation in perovskite, Physics Reviews B, 49, 7868, 10.1103/PhysRevB.49.7868 Jonscher, 1977, The 'universal' dielectric response, Nature, 267, 673, 10.1038/267673a0 Austin, 1969, Polarons in crystalline and non-crystalline materials, Adv Phys, 18, 41, 10.1080/00018736900101267 Kaiser, 2012, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites, Phys B, 407, 606, 10.1016/j.physb.2011.11.043 Choudhary, 2007, Effect of La substitution on structural and electrical properties of Ba (Fe2/3W1/3) O3 nanoceramics, J of Mater Sci, 42, 7423, 10.1007/s10853-007-1835-z Kim, 2001, ‟Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal”, J Phys Soc Jpn, 70, 3129, 10.1143/JPSJ.70.3129 Akter, 2022, Study of structural, dielectric, and impedance properties of lead-free Zr and Y Co-doped BaTiO3, Mater Chem Phys, 275, 10.1016/j.matchemphys.2021.125241 Yu, 2013, ‟Electromagnetic properties of multiferroic magnetoelectric BaTiO3-CoxFe3-xO4 core-shell particles obtained by homogeneous coprecipitation”, J Magnet Magnet Material, 326, 31, 10.1016/j.jmmm.2012.08.033 Kumar, 2010, ‟Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique”, J Alloys Compd, 508, 115, 10.1016/j.jallcom.2010.08.007 Verma, 2006, ‟Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by the citrate precursor technique”, J Magn Magn Mater, 306, 313, 10.1016/j.jmmm.2006.03.033 Verma, 2000, ‟Frequency Variation of Initial Permeability of NiZn Ferrites Prepared by the Citrate Precursor Method”, J Magn Magn Mater, 210, 274, 10.1016/S0304-8853(99)00451-5 Shannon, 1971, ‟Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds”, Inorg Chem, 10, 713, 10.1021/ic50098a011 Caj, 2009, Dielectric properties, microstructure and diffuse transition of Ni-doped Ba (Zr0.2Ti0.8)O3 ceramics, J Alloys Compd, 487, 668, 10.1016/j.jallcom.2009.08.034 Das, 2007, Structural and multiferroic properties of La- modified BiFeO3 Ceramics, J Appl Phys, 101, 10.1063/1.2432869 Miah, 2016, ‟Weak Ferromagnetism and Magnetoelectric Effect in Multiferroic xBa0.95Sr0.05TiO3-(1–x)BiFe0.9Gd0.1O3 Relaxors”, J Magn Magn Mater, 401, 600, 10.1016/j.jmmm.2015.10.083 Kumar, 2009, ‟Mixed Mg–Mn ferrites for high-frequency applications processed by citrate precursor technique”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/15/155001 Smit J, Wign HPJ. ‟Ferrites, John Willy & Sons.Pub. Co. New York”,143, 1959. Bally, 2021, ‟Magnetic properties of La0.55CaxSr0.45-xMnO3 perovskite manganite”, Results Phys, 21, 10.1016/j.rinp.2020.103800 Anjum G, Kumar R, Mollah S, Shukla DK, Kumar S, Lee CG, Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3(0.0≤ x≤ 0.4) multiferroics.Journal of Applied Physics,Vol. 107, 103916, 2010. Guo, 2013, ‟Tunable exchange bias effect in Sr-doped double perovskite La2NiMnO6”, J Phys D Appl Phys, 46, 10.1088/0022-3727/46/17/175302 Nalwa, 2008, ‟Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite”, J Appl Phys, 103, 10.1063/1.2838483 Cheng, 2008, ‟Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite”, J Appl Phys, 103, 07E507, 10.1063/1.2839325 Puli, 2011, ‟Transition metal modified bulk BiFeO3 with improved magnetization and linear magneto-electric coupling”, J Alloys Compd, 509, 8223, 10.1016/j.jallcom.2011.05.077