Synthesis and characterization of dielectric, electric, and magnetic properties of vanadium doped-bismuth europium ferrites for multiferroic applications
Tài liệu tham khảo
Spaldin, 2017, ‟Multiferroics: from the cosmically large to the subatomically small”, Nat Rev Mater, 2, 1, 10.1038/natrevmats.2017.17
Zhang, 2009, ‟Phase evolution and magnetic property of Bi1−xDyxFeO3 ceramics”, Mater Lett, 21, 1820, 10.1016/j.matlet.2009.05.056
Hu, 2009, ‟Enhanced multiferroic properties of BiFeO3 thin films by Nd and high-valence Mo co-doping”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/18/185010
Gao, 2018, Chunling Fu1, “Strong Magnetoelectric Coupling Effect in BaTiO3@CoFe2O4 Magnetoelectric Multiferroic Fluids”, Nanoscale, 10, 11750, 10.1039/C8NR02368A
Gao, 2019, Enhancement of magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4+xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics, J Alloys Compd, 795, 501, 10.1016/j.jallcom.2019.05.013
Wang, 2010, ‟Multiferroic magnetoelectric composite nanostructures”, NPG Asia Mater, 2, 61, 10.1038/asiamat.2010.32
Fiebig, 2005, ‟Revival of the magnetoelectric effect”, J Phys D Appl Phys, 38, R123, 10.1088/0022-3727/38/8/R01
Catalan, 2009, ‟Physics and applications of bismuth ferrite”, Adv Mater, 21, 2463, 10.1002/adma.200802849
Hill, 2000, ‟Why are there so few magnetic ferroelectrics?”, J Phys Chem B, 104, 6694, 10.1021/jp000114x
Smolensky, 1961, ‟New ferroelectrics of complex composition”, IV Sov Phys-Solid State, 2, 2651
Wang, 2020, ‟Structure, performance, and application of BiFeO3 nanomaterials”, Nano-Micro Letters, 12, 1, 10.1007/s40820-020-00420-6
Neaton, 2005, ‟First-principles study of spontaneous polarization in multiferroic BiFeO3”, Phys Rev B, 71, 10.1103/PhysRevB.71.014113
Sosnowska, 1982, ‟Spiral magnetic ordering in bismuth ferrite”, J Phys C Solid State Phys, 15, 4835, 10.1088/0022-3719/15/23/020
Kaczmarek, 1975, ‟Differential thermal analysis of phase transitions in (Bi1−xLax) FeO3 solid solution”, Solid State Commun, 17, 807, 10.1016/0038-1098(75)90726-7
Yang, 2012, ‟A unique magnetic behavior and dielectric properties of Bi0.9–xLa0.1CaxFeO3 nanoparticles at room temperature”, J Phys Chem Solid, 73, 115, 10.1016/j.jpcs.2011.10.021
Bai, 2016, ‟Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles”, J Phys Chem C, 120, 3595, 10.1021/acs.jpcc.5b09945
Gao, 2014, Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 sandwiched capacitors, Appl Phys Lett, 104, 10.1063/1.4862793
Kuang, 2016, ‟Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films”, J Alloys Compd, 671, 192, 10.1016/j.jallcom.2016.02.081
Zhou, 2015, ‟Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by sol-gel technique”, Mater Lett, 144, 93, 10.1016/j.matlet.2015.01.038
Pradhan, 2005, ‟Magnetic and electrical properties of single-phase multiferroic BiFeO3”, J Appl Phys, 97, 10.1063/1.1881775
Wang, 2004, ‟Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl Phys Lett, 84, 1731, 10.1063/1.1667612
Kumar, 2000, ‟Ferroelectricity in a pure BiFeO3 ceramic”, Appl Phys Lett, 76, 2764, 10.1063/1.126468
Anjum, 2010, ‟Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3(0.0≤x≤0.4) multiferroics”, J Appl Phys, 107, 10.1063/1.3386527
Sun, 2015, ‟Phase transition and piezoelectricity of sol–gel-processed Sm-doped BiFeO3 thin films on Pt (111)/Ti/SiO2/Si substrates”, J Mater Chem C, 3, 2115, 10.1039/C4TC02886D
Vanga, 2015, ‟Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles”, Mater Sci Semicond Process, 40, 796, 10.1016/j.mssp.2015.07.078
Mao, 2014, ‟Effect of Ln (Ln= La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles”, J Alloys Compd, 584, 520, 10.1016/j.jallcom.2013.09.117
Mao, 2016, ‟Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles”, PCCP, 18, 6399, 10.1039/C5CP07327H
Dai, 2014, ‟Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics”, Ceram Int, 40, 15617, 10.1016/j.ceramint.2014.07.080
Tan, 2015, A comparative study on the magnetic and electrical properties of Bi0.89Tb0.11FeO3 and Bi0.89Tb0.11FeO3/CoFe2O4 multiferroic thin films, J Alloys Compd, 623, 243, 10.1016/j.jallcom.2014.10.129
Kim, 2009, ‟Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics”, J Magn Magn Mater, 321, 3262, 10.1016/j.jmmm.2009.05.059
Kumar, 2006, ‟Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system”, J Appl Phys, 100, 10.1063/1.2349491
Jun, 2007, ‟Dielectric and magnetic properties in Co-and Nb-substituted BiFeO3 ceramics”, Solid State Commun, 144, 329, 10.1016/j.ssc.2007.08.029
Lahmar, 2009, Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films, Appl Phys Lett, 94, 10.1063/1.3064954
Gowrishankar, 2016, ‟Effect of Gd–Ti co-substitution on structural, magnetic and electrical properties of multiferroic BiFeO3”, J Magn Magn Mater, 418, 54, 10.1016/j.jmmm.2016.03.085
Das, 2023, Rietveld refined crystal structure, magnetic, dielectric, and electric properties of Li- substituted Ni–Cu–Zn ferrite and Sm, Dy co-doped BaTiO3 multiferroic composites, Ceram Int, 49, 6045, 10.1016/j.ceramint.2022.11.142
Mao, 2012, ‟Structural and magnetic properties of single-phase Bi0.9Eu0.1Fe0.95Co0.05O3 and Bi0.9Eu0.05La0.05Fe0.95Co0.05O3 nanoparticles”, Mater Lett, 76, 135, 10.1016/j.matlet.2012.02.082
Chakrabarti, 2012, ‟Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles”, Appl Phys Lett, 101, 10.1063/1.4738992
Das Mithun Kumar, 2020, An experimental insight of the multiferroic properties of magnetoelectrically coupled xLNCZFO+(1−x)BSTDO composites, J Magn Magn Mater, 502, 166449, 10.1016/j.jmmm.2020.166449
Arya, 2013, ‟Enhanced magnetic properties of Sm and Mn co-doped BiFeO3 nanoparticles at room temperature”, Mater Lett, 93, 341, 10.1016/j.matlet.2012.11.131
Godara, 2015, ‟Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles”, Ceram Int, 41, 6912, 10.1016/j.ceramint.2015.01.145
Das, 2020, Study of impedance and magnetoelectric property of lead-free xLCNZFO+ (1–x)BGTDO multiferroic composites, Mater Chem Phys, 255, 123575, 10.1016/j.matchemphys.2020.123575
Vijayasundaram, 2016, ‟Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles”, J Alloys Compd, 658, 726, 10.1016/j.jallcom.2015.10.250
Yu, 2008, ‟Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics”, J Phys D Appl Phys, 41, 10.1088/0022-3727/41/6/065003
Babar, 2010, ‟Structural and optoelectronic properties of antimony incorporated tin oxide thin films”, J Alloys Compd, 505, 416, 10.1016/j.jallcom.2010.06.091
Goldman, 1999, Basics of magnetism-source of magnetic effect, vol. 505, 17
Vanga, 2016, ‟Sol-gel synthesis and characterization of (Nd, Cr) co-doped BiFeO3 nanoparticles”, J Exp Nanosci, 11, 1348, 10.1080/17458080.2016.1218556
Kumar, 2008, ‟Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics”, Mater Lett, 62, 1159, 10.1016/j.matlet.2007.07.075
Suresh, 2014, ‟A comparative study of sol-gel and solid-state prepared La3+ doped multiferroic BiFeO3”, Adv Mater Lett, 5, 127, 10.5185/amlett.2013.fdm.34
Denton, 1991, Vegard’s law, Phys Rev A, 3161, 10.1103/PhysRevA.43.3161
Palkar, 2003, ‟Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system”, J Appl Phys, 93, 4337, 10.1063/1.1558992
Hossain, 2012, ‟Influence of Li substitution on structural and magnetic properties of LixNi0.2Mg0.8−2xFe2+xO4”, Mater Chem Phys, 133, 941, 10.1016/j.matchemphys.2012.01.120
Fki, 2017, ‟Influence of Y doping on structural, vibrational, optical, and magnetic properties of BiFeO3 ceramics prepared by Mechanical Activation”, Ceram Int, 43, 4139, 10.1016/j.ceramint.2016.12.028
Bhushan, 2009, ‟Effect of alkaline earth metal doping on thermal, optical, magnetic, and dielectric properties of BiFeO3 nanoparticles”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/6/065004
Gautam, 2010, ‟Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite”, Cryst Res Technol, 45, 953, 10.1002/crat.201000050
Raghavan, 2013, ‟Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film”, Ceram Int, 39, 3563, 10.1016/j.ceramint.2012.10.182
Ahad, 2019, ‟Effect of Y substitution on magnetic and transport properties of Ba0.95La0.05Ti1-xYxO3 ceramics”, Results Phys, 12, 1925, 10.1016/j.rinp.2019.01.072
Dana, 1922, A textbook of mineralory: with an extended treatise on crystallography, 316, 195
Xu, 2014, ‟Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3”, J Alloys Compd, 587, 308, 10.1016/j.jallcom.2013.10.174
Jaffari, 2015, ‟Effect of A and B-site substitution with Pb, La, and Ti on phase stabilization and multiferroic properties of BiFeO3”, J Alloys Compd, 644, 893, 10.1016/j.jallcom.2015.05.065
Kim, 2010, ‟Multiferroic properties of Ti-doped BiFeO3 ceramics”, J Korean Phys Soc, 56, 439, 10.3938/jkps.56.439
Zhi, 1999, ‟Incorporation of yttrium in barium titanate ceramics”, J Am Ceram Soc, 82, 1345, 10.1111/j.1151-2916.1999.tb01921.x
Liu, 2004, Hardy, ‟Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12”, Physics Reviews B, 70, 10.1103/PhysRevB.70.144106
Matin MA, Hossain MN, Rizvi MH, Zubair MH, Hakim MA, Hussain A, Islam MF. Enhancing magnetoelectric and optical properties of co-doped bismuth ferrite multiferroic nanostructures. In: 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC); 2017. p. 1–7.
Gaoa, 2019, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics, Compos B, 166, 204, 10.1016/j.compositesb.2018.12.010
Gao, 2018, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites, Ceram Int, 44, S84, 10.1016/j.ceramint.2018.08.234
Gao, 2019, A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics, Mater Chem Phys, 232, 428, 10.1016/j.matchemphys.2019.05.016
Anwar, 2020, Influence of Mn2+ substitution on structural, morphological, electrical, and magnetic properties of Ba0.4Ca0.4Sr0. 2MnxTi1−xO3 perovskites, AIP Adv, 10, 10.1063/5.0003294
Mohapatra, 2016, ‟Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics”, Ceram Int, 42, 12352, 10.1016/j.ceramint.2016.05.008
Nadeem, 2018, ‟Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping”, J Appl Phys, 124, 10.1063/1.5050946
Matin, 2019, ‟Enhanced dielectric properties of prospective Bi0.85Gd0.15Fe1−xCrxO3 multiferroics”, Results Phys, 12, 1653, 10.1016/j.rinp.2019.01.079
Bidault, 1994, Space-charge relaxation in perovskite, Physics Reviews B, 49, 7868, 10.1103/PhysRevB.49.7868
Jonscher, 1977, The 'universal' dielectric response, Nature, 267, 673, 10.1038/267673a0
Austin, 1969, Polarons in crystalline and non-crystalline materials, Adv Phys, 18, 41, 10.1080/00018736900101267
Kaiser, 2012, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites, Phys B, 407, 606, 10.1016/j.physb.2011.11.043
Choudhary, 2007, Effect of La substitution on structural and electrical properties of Ba (Fe2/3W1/3) O3 nanoceramics, J of Mater Sci, 42, 7423, 10.1007/s10853-007-1835-z
Kim, 2001, ‟Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal”, J Phys Soc Jpn, 70, 3129, 10.1143/JPSJ.70.3129
Akter, 2022, Study of structural, dielectric, and impedance properties of lead-free Zr and Y Co-doped BaTiO3, Mater Chem Phys, 275, 10.1016/j.matchemphys.2021.125241
Yu, 2013, ‟Electromagnetic properties of multiferroic magnetoelectric BaTiO3-CoxFe3-xO4 core-shell particles obtained by homogeneous coprecipitation”, J Magnet Magnet Material, 326, 31, 10.1016/j.jmmm.2012.08.033
Kumar, 2010, ‟Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique”, J Alloys Compd, 508, 115, 10.1016/j.jallcom.2010.08.007
Verma, 2006, ‟Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by the citrate precursor technique”, J Magn Magn Mater, 306, 313, 10.1016/j.jmmm.2006.03.033
Verma, 2000, ‟Frequency Variation of Initial Permeability of NiZn Ferrites Prepared by the Citrate Precursor Method”, J Magn Magn Mater, 210, 274, 10.1016/S0304-8853(99)00451-5
Shannon, 1971, ‟Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds”, Inorg Chem, 10, 713, 10.1021/ic50098a011
Caj, 2009, Dielectric properties, microstructure and diffuse transition of Ni-doped Ba (Zr0.2Ti0.8)O3 ceramics, J Alloys Compd, 487, 668, 10.1016/j.jallcom.2009.08.034
Das, 2007, Structural and multiferroic properties of La- modified BiFeO3 Ceramics, J Appl Phys, 101, 10.1063/1.2432869
Miah, 2016, ‟Weak Ferromagnetism and Magnetoelectric Effect in Multiferroic xBa0.95Sr0.05TiO3-(1–x)BiFe0.9Gd0.1O3 Relaxors”, J Magn Magn Mater, 401, 600, 10.1016/j.jmmm.2015.10.083
Kumar, 2009, ‟Mixed Mg–Mn ferrites for high-frequency applications processed by citrate precursor technique”, J Phys D Appl Phys, 42, 10.1088/0022-3727/42/15/155001
Smit J, Wign HPJ. ‟Ferrites, John Willy & Sons.Pub. Co. New York”,143, 1959.
Bally, 2021, ‟Magnetic properties of La0.55CaxSr0.45-xMnO3 perovskite manganite”, Results Phys, 21, 10.1016/j.rinp.2020.103800
Anjum G, Kumar R, Mollah S, Shukla DK, Kumar S, Lee CG, Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3(0.0≤ x≤ 0.4) multiferroics.Journal of Applied Physics,Vol. 107, 103916, 2010.
Guo, 2013, ‟Tunable exchange bias effect in Sr-doped double perovskite La2NiMnO6”, J Phys D Appl Phys, 46, 10.1088/0022-3727/46/17/175302
Nalwa, 2008, ‟Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite”, J Appl Phys, 103, 10.1063/1.2838483
Cheng, 2008, ‟Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite”, J Appl Phys, 103, 07E507, 10.1063/1.2839325
Puli, 2011, ‟Transition metal modified bulk BiFeO3 with improved magnetization and linear magneto-electric coupling”, J Alloys Compd, 509, 8223, 10.1016/j.jallcom.2011.05.077