Tổng hợp và đặc trưng của nhũ tương cellulose gốc carboxylate trên cơ sở cellulose acetate

Springer Science and Business Media LLC - Tập 24 - Trang 2049-2057 - 2017
Xiuxia Su1, Yi Zhang1, Dongdong Zhao1, Zhuo Chen1
1Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an, China

Tóm tắt

Với cellulose acetate (CA) làm nguyên liệu chính, một nhũ tương cellulose acetate gốc carboxylate (CWCA) thân thiện với môi trường đã được tổng hợp thông qua phương pháp tự nhũ hóa. Tận dụng axit acrylic, hydroxyethyl acrylate làm chất điều chỉnh, và isophorone diisocyanate làm tác nhân cầu nối, thiết kế cấu trúc phân tử của phân tán CWCA đã được hoàn thành thành công, và cấu trúc được xác nhận bằng phân tích phổ hồng ngoại biến đổi Fourier (FTIR). Trong công trình này, kích thước hạt và sự phân bố của phân tán CWCA ổn định với hàm lượng rắn 22,6% lần lượt là 115,6 và 0,158 nm. Kết quả cho thấy vi cấu trúc của các hạt nhũ tương là cấu trúc lõi-vỏ, trong đó nhóm carboxylate ưa nước là lớp vỏ và phân tử cellulose acetate kỵ nước là lõi. Ngoài ra, hành vi kỵ nước của phim CWCA được thể hiện qua góc tiếp xúc 109,9°. Hơn nữa, phim CWCA cho thấy nhiệt độ phân hủy nhiệt cao hơn 345,42 °C so với phim CA tại tỷ lệ mất khối lượng lớn nhất.

Từ khóa

#nhũ tương cellulose acetate #cellulose gốc carboxylate #phương pháp tự nhũ hóa #phân tích phổ hồng ngoại Fourier #vi cấu trúc nút-core

Tài liệu tham khảo

Aguirresarobe RH, Martin LL, Aramburu N, Irusta L, Fernandez-Berridi MJ (2016) Coumarin based light responsive healable waterborne polyurethanes. Prog Org Coat 99:314–321 Bali G, Khunsupat R, Akinosho H, Payyavula RS, Samuel R, Tuskan GA, Kalluri UC, Ragauskas AJ (2016) Characterization of cellulose structure of Populus, plants modified in candidate cellulose biosynthesis genes. Biomass Bioenergy 94:146–154 Bergenstrahle-Wohlert M, Ortoli TA, Sjoberg NA, Widmalm G, Wohlert J (2016) On the anomalous temperature dependence of cellulose aqueous solubility. Cellulose 23:2375–2387 Candido RG, Gonçalves AR (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr Polym 152:679–686 Cao J, Sun XW, Lu CH, Zhou ZH, Zhang XX, Yuan GP (2016) Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr Polym 149:60–67 Chen L, Hong L, Lin JC, Meyers G, Harris J, Radler M (2016) Epoxy–acrylic core–shell particles by seeded emulsion polymerization. J Colloids Interface Sci 473:182–189 Erdman A, Kulpinski P, Olejnik K (2016) Application of nanocomposite cellulose fibers with luminescent properties to paper functionalization. Cellulose 23:2087–2097 Ghosh B, Gogoi S, Thakur S, Karak N (2016) Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material. Prog Org Coat 90:324–330 Habib E, Reza Y, Valiollah B (2016) Study on the reinforcing effect of nanodiamond particles on the mechanical, thermal and antibacterial properties of cellulose acetate membranes. Diam Relat Mater 69:166–176 Hasanzadeh I, Mahdavian AR, Salehi-Mobarakeh H (2014) Particle size and shell composition as effective parameters on MFFT for acrylic core–shell particles prepared via seeded emulsion polymerization. Prog Org Coat 77:1874–1882 Jiang YJ, Li L, Liu JP, Wang R, Wang HS (2016) Hydrophobic films of acrylic emulsion by incorporation of fluorine-based copolymer prepared through the RAFT emulsion copolymerization. J Fluor Chem 183:82–91 Jogunola O, Eta V, Hedenström M, Sundman O, Salmi T, Mikkola JP (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohydr Polym 135:341–348 Kang HL, Liu RG, Huang Y (2015) Graft modication of cellulose: methods, properties and applications. Polymer 70:1–16 Kim M, Lee YS (2016) Deacetylation of cellulose acetate nanofibers by fluorination for carbon nanofibers. Mater Lett 181:236–239 Lei L, Xia ZB, Ou CB, Zhang L, Zhong L (2015) Effects of crosslinking on adhesion behavior of waterborne polyurethane ink binder. Prog Org Coat 88:155–163 Li M, Qiang XH, Xu W, Zhang H (2015) Synthesis, characterization and application of AFC-based waterborne polyurethane. Prog Org Coat 84:35–41 Liu N, Zhao YH, Kang MQ, Wang JW, Wang XK, Feng YL, Yin N, Li QF (2015) The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog Org Coat 82:46–56 Ma SD, Song GL, Feng NB (2016) Preparation and characterization of self-emulsified waterborne nitrocellulose. Carbohydr Polym 89:36–40 Mysliwiec D, Chylinska M, Monika SC, Chibowski S, Zdunek A (2016) Revision of adsorption models of xyloglucan on microcrystalline cellulose. Cellulose 23:2819–2829 Nemr AE, Ragab S, Sikaily AE (2016) Testing zinc chloride as a new catalyst for direct synthesis of cellulose di-and tri-acetate in a solvent free system under microwave irradiation. Carbohydr Polym 151:1058–1067 Patricio PSDO, Pereira IM, Silva NCFD, Ayres E, Pereira FV, Orefice RL (2013) Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation. Eur Polym J 49:3761–3769 Peng SJ, Jin Y, Cheng XF, Sun TB, Qi R, Fan BZ (2015) A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution. Prog Org Coat 86:1–10 Pi PH, Wang WX, Wen XF, Xu S, Cheng J (2015) Synthesis and characterization of low-temperature self-crosslinkable acrylate emulsion for PE/PP film ink. Prog Org Coat 81:66–71 Poma AB, Chwastyk M, Cieplak M (2016) Coarse-grained model of the native cellulose Iα a and the transformation pathways to the Iβ allomorph. Cellulose 23:1573–1591 Przybylak M, Maciejewski H, Dutkiewicz A, Dabek I, Nowicki M (2016) Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose 23:2185–2197 Santamaria-Echart A, Arbelaiz A, Saralegi A, Fernández-d’Arlas B, Eceiza A, Corcuera MA (2015) Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Colloids Surf A 482:554–561 Shen YZ, Zhao C, Zhou JM, Du CW (2015) Application of waterborne acrylic emulsions in coated controlled release fertilizer using reacted layer technology. Chin J Chem Eng 23:309–314 Su XX, Zhao QX, Zhang D, Dong W (2015) Synthesis and membrane performance characterization of self-emulsified waterborne nitrocellulose dispersion modified with castor oil. Appl Surf Sci 356:610–614 Willberg-Keyriläinen P, Talja R, Asikainen S, Harlin A, Ropponen J (2016) The effect of cellulose molar mass on the properties of palmitate esters. Carbohydr Polym 151:988–995 Wu GM, Chen J, Huo SP, Liu GF, Kong ZW (2014) Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym 105:207–213 Xu Q, Chen C, Rosswurm K, Yao TM, Janaswamy S (2016) A facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281 Yang JY, Duan JJ, Zhang L, Lindman B, Edlund H, Norgren M (2016) Spherical nanocomposite particles prepared from mixed cellulose–chitosan solutions. Cellulose 23:3105–3115