Synthesis and characterization of Ni-Si mixed oxide nanocomposite as a catalyst for carbon nanotubes formation
Tóm tắt
Ni-Si mixed oxide nanocomposite was prepared by co-precipitation method with Ni(NO3)2 · 6H2O and tetraethylorthosilicate (TEOS) at pH = 10.5 under reflux condition for 6 days. It was then used as a catalyst for the formation of carbon nanotubes (CNTs) by CVD procedure. Characterization of the catalyst and the CNTs was carried out using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results showed that Ni-Si mixed oxides nanorods with the average diameter of 3 to 4 nm play a key role in CNTs formation.
Tài liệu tham khảo
De-Heerw A., Chatelain A., Ugarte D.A., Science, 270 (1995), 1179.
Cheng H.M., Yang Q.H., Liu C., Carbon, 39 (2001), 1447.
Derycke V., Martel R., Appenzeller J., Avouris PH., Nano Lett.,.
Tans S.J., Verschuren R.M., Dekker C., Nature, 1 (2001), 453.
Planeix J.M., Coustel N., Coq B., Brotons V., J. Am. Chem. Soc., 116 (1994), 7935.
Luo J.Z., Gao L.Z, Leung Y.L., Au C.T., Catal. Lett., 66 (2000), 91.
Dong X., Zhang H.B., Lin G.D., Yuan Y.Z., Catal. Lett., 85 (2003), 237.
Iijima S., Nature, 354 (1991), 56.
Iijima S., Ichihashi T., Nature, 363 (1993) 603.
Satio Y., Tani Y., Miyagawa N., Mitsushima K., Chem. Phys. Lett., 294 (1998), 593.
Yudasaka M., Komatsu T., Ichihashi T., Iijima S., Chem. Phys. Lett., 278 (1997), 102.
Birkeett P.R., Cheetman A.J., Eggen B.R., Hare J.P., Chem. Phys. Lett., 281 (1997), 111.
Xu X.-J., Huang S.-M., Mater. Lett., 61 (2007), 4235.
Kunadian I., Andrews R., Qian D., Pinar Menguc M., Carbon, 47 (2009), 384.
Ihm K., Kang T.-H., Lee D. H., Park S.-Y., Kim K.-J., Kim B., Yang J.-H., Park C.-Y., Surf. Sci., 600 (2006), 3729.
Ren Z.F., Huany Z.P., Xu J.W., Wang J.H., Bush P., Siegal M. Provenico P.N., Science, 282 (1998), 1105.
Choi Y.C., Shin Y.M., Lee Y.H., Lee B.S, Park G.S., Choi W.B., Leen S., Kimj. M., Appl. Phys. Lett., 76 (2000), 2367.
Chhowalla M., Teo K., Amaratunga G.A.J., Ferrari A.C., Roy D., Robertson J., Milne W. I., J. Appl. Phys., 90 (2001), 530.
Triantafylhidis K.S., Karakoulia S.A., Gournis D., Delimits A., Nalbandian L., Maccallini E., Rudolf R., Micropor. Mesopor. Mater., 110 (2008), 128.
Fonseca A., Hernadi K., Nagy J.B., Bernaerts D., Lucas A., J. Mol. Catal. A, 107 (1996), 159.
Martin I., Rius G., Atienzar P., Teruel L., Mesters N., Perez-Murano F., Garcia H., Godignon P., Corma A., Lora-Tamayo E., Microelectronic Engineering, 8 (2008), 1202.
Lim S., Ciuparu D., Pak C., Dobek F., Chen Y., Hardinga D., Pfefferle L., Haller G., J. Phys. Chem. B, 107 (2003), 11048.
Hernadia K., Fonseca A., Nagy J.B., Berneaerts D., Lucas A.A., Carbon, 34 (1996), 1249.
Li J., Lu G., Appl. Catal. A: Gen., 273 (2004), 163.
Gournis D., Karakassides M.A., Bakes T., Bukos N., Petridis D., Carbon, 40 (2002), 2641.
Cassel A.M., Raymakers J.A., Kong J., Dai H., J. Phys. Chem.B, 103 (1999), 6484.
Hafner J., Bronikowski M., Azamian B., Nikolaev P., Colbert P., Smalley R., Chem. Phys. Lett., 296 (1998), 195.
Pan Z.W., Xie S.S., Chang B.H., Wang C.Y., Lu L., Liu W., Zhou W.Y., Li W.Z., Qianl X., Nature, 394 (1998), 631.
Lyu S.C., Liu B.C., Lee T.J., Yang C.W., Park C.Y., Lee C., J. Chem. Commun., (2003), 734.
Flahaut E., Bacsa R., Peigney A., Laurent C., Chem. Commun., (2003), 1442.
Akbarzadeh Pash A.M., Shfiekhani A., Vesaghi M.A., Appl. Surf. Sci., 256 (2009) 1365.
Dresselhaus M.S., Dresselhaus G., Jorio A., Souza Filho A.G., Saito R., Carbon, 40 (2002) 2045.