Synthesis and biomedical applications of nanoceria, a redox active nanoparticle

Journal of Nanobiotechnology - Tập 17 Số 1 - 2019
Neelam Thakur1, Prasenjit Manna2, Joydeep Das1
1School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan 173229, HP, India
2Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fard JK, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5(4):447–54. https://doi.org/10.15171/apb.2015.061 .

Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400(1–3):396–414. https://doi.org/10.1016/j.scitotenv.2008.06.042 .

Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (United Kingdom). 2014;6(1):9–26.

Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1137–52.

Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed. 2007;46(8):1222–44.

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;1:1. https://doi.org/10.1016/j.arabjc.2017.05.011 .

Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3.

Tiwari DK, Behari J, Sen P. Application of nanoparticles in waste water treatment. World Appl Sci J. 2008;47:3931–46.

Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011;6(3):175–8.

Dahle JT, Arai Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health. 2015;12(2):1253–78.

Karakoti AS, Kuchibhatla SVNT, Babu KS, Seal S. Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. J Phys Chem C. 2007;111(46):17232–40.

Dhall A, Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants. 2018;7(8):97.

Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736–8.

Estevez AY, Erlichman JS. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine. 2014;9(10):1437–40.

Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun. 2007;10:1056–8.

Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, et al. Bio- distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2013;28:107.

Jacobs G, Williams L, Graham U, Sparks D, Davis BH. Low-temperature water-gas shift: in-situ DRIFTS—reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications. J Phys Chem B. 2003;107(38):10398–404.

Goubin F, Rocquefelte X, Whangbo M, Montardi Y, Brec R, Jobic S. Experimental and Theoretical Characterization of the the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions. Chem Mater. 2004;16(4):662–9.

Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Sensors Actuators B Chem. 2003;95(1–3):73–7.

Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng. 1996;38(4):439–520.

Dao NN, Luu MD, Nguyen QK, Kim BS. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv Nat Sci Nanosci Nanotechnol. 2011;2(4):4–8.

Sohlberg K, Pantelides ST, Pennycook SJ. Interactions of hydrogen with CeO2. J Am Chem Soc. 2001;123(27):6609–11.

Shchukin DG, Caruso RA. Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater. 2004;16(11):2287–92.

Younce CW, Wang K, Kolattukudy PE. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res. 2010;87(4):665–74.

Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):e90. https://doi.org/10.1038/am.2013.88 .

Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles—a review. Biotechnol Rep. 2018;17:1–5. https://doi.org/10.1016/j.btre.2017.11.008 .

Kargozar S, Baino F, Hoseini SJ, Hamzehlou S, Darroudi M, Verdi J, et al. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine. 2018;13(23):3051–69.

Terribile D, Trovarelli A, Llorca J, De Leitenburg C, Dolcetti G. The synthesis and characterization of mesoporous high-surface area. J Catal. 1998;178(1):299–308.

Tsai MS. Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance. Mater Sci Eng B Solid-State Mater Adv Technol. 2004;110(2):132–4.

Kamruddin M, Ajikumar PK, Nithya R, Tyagi AK, Raj B. Synthesis of nanocrystalline ceria by thermal decomposition and soft-chemistry methods. Scr Mater. 2004;50(4):417–22.

Du N, Zhang H, Chen B, Ma X, Yang D. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature. J Phys Chem C. 2007;111(34):12677–80.

Farahmandjou M, Zarinkamar M, Firoozabadi TP. Synthesis of cerium oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev Mex física. 2016;62:496–9.

Sulthana S, Banerjee T, Kallu J, Vuppala SR, Heckert B, Naz S, et al. Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm. 2017;14(3):875–84.

Kalashnikova I, Mazar J, Neal CJ, Rosado AL, Das S, Westmoreland TJ, et al. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis: via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale. 2017;9(29):10375–87.

Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small. 2008;4(5):552–6.

Kumar A, Babu S, Karakoti AS, Schulte A, Seal S. Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir. 2009;25(18):10998–1007.

Zhang QL, Yang ZM, Ding BJ. Synthesis of cerium oxide nanoparticles by the precipitation method. Mater Sci Forum. 2009;610–613(3):233–8.

Ketzial JJ, Nesaraj AS. Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a sur-factant on the distribution of particle sizes. J Ceram Process Res. 2011;12(1):74–9.

Renuka NK. Structural characteristics of quantum-size ceria nano particles synthesized via simple ammonia precipitation. J Alloys Compd. 2012;513:230–5. https://doi.org/10.1016/j.jallcom.2011.10.027 .

Suresh R, Ponnuswamy V, Mariappan R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl Surf Sci. 2013;273:457–64. https://doi.org/10.1016/j.apsusc.2013.02.062 .

Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles. J Colloid Interface Sci. 2013;410:158–64. https://doi.org/10.1016/j.jcis.2013.08.009 .

Babitha KK, Sreedevi A, Priyanka KP, Sabu B, Varghese T. Structural characterization and optical studies of CeO nanoparticles synthesized by chemical precipitation. Indian J Pure Appl Phys. 2015;53(9):596–603.

Sun C, Li H, Wang Z, Chen L, Huang X. Synthesis and characterization of polycrystalline CeO2 nanowires. Chem Lett. 2004;33(6):662–3.

Sujana MG, Chattopadyay KK, Anand S. Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Appl Surf Sci. 2008;254(22):7405–9.

Shelkar R, Sarode S, Nagarkar J. Nano ceria catalyzed synthesis of substituted benzimidazole, benzothiazole, and benzoxazole in aqueous media. Tetrahedron Lett. 2013;54(51):6986–90. https://doi.org/10.1016/j.tetlet.2013.09.092 .

Rahdar A, Aliahmad M, Hajinezhad MR, Samani M. Xanthan gum-stabilized nano-ceria: green chemistry based synthesis, characterization, study of biochemical alterations induced by intraperitoneal doses of nanoparticles in rat. J Mol Struct. 2018;1173:166–72.

Masui T, Hirai H, Imanaka N, Adachi G, Sakata T, Mori H. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. J Mater Sci Lett. 2002;21(6):489–91.

Renu G, Divya Rani VV, Nair SV, Subramanian KRV, Lakshmanan VK. Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv Sci Lett. 2012;6:17–25.

Mai H, Sun L, Zhang Y, Si R, Feng W, Zhang H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B. 2005;24:380–5.

Zhou K, Wang X, Sun X, Peng Q, Li Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal. 2005;229(1):206–12.

Gao W, Zhang Z, Li J, Ma Y, Qu Y. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation. Nanoscale. 2015;7(27):11686–91.

Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, et al. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int J Nanomed. 2018;13:2161–73.

Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.

Zhou F, Zhao X, Xu H, Yuan C. CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study. J Phys Chem C. 2007;111(4):1651–7.

Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, et al. Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J Phys Chem C. 2011;115(15):7628–37.

Maensiri S, Masinghboon C, Laokul P, Jareonboon W, Promarak V, Anderson PL, et al. Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst Growth Des. 2007;7:950–5.

Kargar H, Ghazavi H, Darroudi M. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram Int. 2015;41(3):4123–8. https://doi.org/10.1016/j.ceramint.2014.11.108 .

Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C. 2015;49:408–15. https://doi.org/10.1016/j.msec.2015.01.042 .

Kannan SK, Sundrarajan M. A Green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci. 2014;13(03):1450018.

SaiPriya G, Kanneganti A, Kumar KA, Rao KV, Bykkam S. Bio synthesis of cerium oxide nanoparticles using aloe barbadensis miller gel. Int J Sci Res Publ. 2014;4(1):2250–3153.

Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomed. 2016;11:5015–25.

Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M. Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: main physical properties. J Alloys Compd. 2015;647:392–6. https://doi.org/10.1016/j.jallcom.2015.06.076 .

Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2014;2(1):318–23.

Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram Int. 2015;41(1):1589–94. https://doi.org/10.1016/j.ceramint.2014.09.095 .

Darroudi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Amiri MS. Nanoceria: Gum mediated synthesis and in vitro viability assay. Ceram Int. 2014;40(2):2863–8. https://doi.org/10.1016/j.ceramint.2013.10.026 .

Darroudi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Hosseini HA, Gholami L. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram Int. 2014;40(1):2041–5. https://doi.org/10.1016/j.ceramint.2013.07.116 .

Darroudi M, Hoseini SJ, Kazemi Oskuee R, Hosseini HA, Gholami L, Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram Int. 2014;40(5):7425–30. https://doi.org/10.1016/j.ceramint.2013.12.089 .

Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL. Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol. 2016;180(4):638–54. https://doi.org/10.1007/s12010-016-2121-9 .

Lee JS, Choi SC. Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH. Mater Lett. 2004;58(3–4):390–3.

Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SVN, Wozniak K, et al. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc. 2009;131:14144–5.

Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, et al. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal. 2012;19(8):765–78.

Zhou K, Yang Z, Yang S. Highly reducible CeO2 nanotubes. Chem Mater. 2007;19(6):1215–7.

Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS ONE. 2011;6:2.

Wong LL, Hirst SM, Pye QN, Reilly CM, Seal S, McGinnis JF. Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS ONE. 2013;8:3.

Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM, Seal S, et al. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS ONE. 2013;8:1.

Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, et al. Nanoceria as antioxidant : synthesis and biomedical applications. Jom. 2008;60(3):33–7.

Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, et al. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem. 2010;20(40):8912–9.

Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanopartieles. Angew Chemie Int Ed. 2009;48(13):2308–12.

Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology. 2010;21:3.

Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev. 2013;42(7):2555–67.

Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A. Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J Colloid Interface Sci. 2002;246(1):78–84.

Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, et al. Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. Phys Chem Chem Phys. 2002;4(15):3794–9.

Dutta DP, Manoj N, Tyagi AK. White light emission from sonochemically synthesized rare earth doped ceria nanophosphors. J Lumin. 2011;131(8):1807–12. https://doi.org/10.1016/j.jlumin.2011.04.017 .

Agawane SM, Nagarkar JM. Nano ceria catalyzed synthesis of α-aminophosphonates under ultrasonication. Tetrahedron Lett. 2011;52(27):3499–504. https://doi.org/10.1016/j.tetlet.2011.04.112 .

Choudhury B, Choudhury A. Ce 3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater Chem Phys. 2012;131(3):666–71. https://doi.org/10.1016/j.matchemphys.2011.10.032 .

Hayes BL. Recent advances in microwave-assisted synthesis. Aldrichim Acta. 2004;37:66–76.

Lew A, Krutzik PO, Hart ME, Chamberlin AR. Increasing rates of reaction: microwave-assisted organic synthesis for combinational chemistry. J Comb Chem. 2002;4(2):95–105.

Gao F, Lu Q, Komarneni S. Fast synthesis of cerium oxide nanoparticles and nanorods. J Nanosci Nanotechnol. 2006;6(12):3812–9.

Tao Y, Gong FH, Wang H, Wu HP, Tao GL. Microwave-assisted preparation of cerium dioxide nanocubes. Mater Chem Phys. 2008;112(3):973–6.

Shirke BS, Patil AA, Hankare PP, Garadkar KM. Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J Mater Sci Mater Electron. 2011;22(2):200–3.

Soren S, Jena SR, Samanta L, Parhi P. Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave-mediated synthesis. Appl Biochem Biotechnol. 2015;177(1):148–61.

Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci. 2008;12(3–4):44–50. https://doi.org/10.1016/j.cossms.2008.12.002 .

Shi S, Hossu M, Hall R, Chen W. Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu-doped nanoceria CeO2:Eu. J Mater Chem. 2012;22(44):23461–7.

Jamshidijam M, Mangalaraja RV, Akbari-Fakhrabadi A, Ananthakumar S, Chan SH. Effect of rare earth dopants on structural characteristics of nanoceria synthesized by combustion method. Powder Technol. 2014;253:304–10. https://doi.org/10.1016/j.powtec.2013.10.032 .

Wu J, Shi S, Wang X, Li J, Zong R, Chen W. Controlled synthesis and optimum luminescence of Sm3+-activated nano/submicroscale ceria particles by a facile approach. J Mater Chem C. 2014;2(15):2786–92.

Ravishankar TN, Ramakrishnappa T, Nagaraju G, Rajanaika H. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen. 2015;4(2):146–54.

Singh RN, Awasthi R. New and future developments in catalysis: Chapter 16. Alcohol fuel cells. New York: Elsevier Inc.; 2013.

Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials 1st nano update. Arab J Chem. 2012;5(4):397–417. https://doi.org/10.1016/j.arabjc.2010.09.027 .

Patil S, Kuiry SC, Seal S, Vanfleet R. Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanoparticle Res. 2002;4:433–8.

Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28(10):1918–25.

Sathyamurthy S, Leonard KJ, Dabestani RT, Paranthaman MP. Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology. 2005;16(9):1960–4.

Huang Y, Cai Y, Qiao D, Liu H. Morphology-controllable synthesis and characterization of CeO2 nanocrystals. Particuology. 2011;9(2):170–3. https://doi.org/10.1016/j.partic.2010.07.023 .

Tiseanu C, Parvulescu VI, Boutonnet M, Cojocaru B, Primus PA, Teodorescu CM, et al. Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Phys Chem Chem Phys. 2011;13(38):17135–45.

Rao BG, Mukherjee D, Reddy BM. Novel approaches for preparation of nanoparticles. New York: Elsevier Inc.; 2017. p. 1–36. https://doi.org/10.1016/B978-0-323-46142-9/00001-3 .

Yu T, Joo J, Park Y II, Hyeon T. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew Chemie Int Ed. 2005;44(45):7411–4.

Li L, Yang HK, Moon BK, Fu Z, Guo C, Jeong JH, et al. Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a sol–gel method. J Phys Chem C. 2008;113:610–7.

Gnanam S, Rajendran V. Synthesis of CeO2 or α-Mn2O3 nanoparticles via sol-gel process and their optical properties. J Sol-Gel Sci Technol. 2011;58(1):62–9.

Wang Z, Quan Z, Lin J. Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorg Chem. 2007;46(13):5237–42.

Kar S, Patel C, Santra S. Direct room temperature synthesis of valence state engineered ultra-small ceria nanoparticles: investigation on the role of ethylenediamine as a capping agent. J Phys Chem C. 2009;113(12):4862–7.

Yu T, Lim B, Xia Y. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew Chemie Int Ed. 2010;49(26):4484–7.

Lan YP, Sohn HY. Nanoceria synthesis in molten KOH–NaOH mixture: characterization and oxygen vacancy formation. Ceram Int. 2018;44(4):3847–55. https://doi.org/10.1016/j.ceramint.2017.11.172 .

Takai O. Solution plasma processing (SPP). Pure Appl Chem. 2008;80(9):2003–11.

Kim SC, Kim JW, Yoon GJ, Nam SW, Lee SY. Antifungal effects of 3D scaffold type gelatin/Ag nanoparticles biocomposite prepared by solution plasma processing. Curr Appl Phys. 2013;13(1):S48–53. https://doi.org/10.1016/j.cap.2013.01.035 .

Davoodbasha MA, Park BR, Rhee WJ, Lee SY, Kim JW. Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study. Arch Biochem Biophys. 2018;645:42–9. https://doi.org/10.1016/j.abb.2018.02.003 .

Patil S, Reshetnikov S, Haldar MK, Seal S, Mallik S. Surface-derivatized nanoceria with human carbonic anhydrase II inhibitors and fluorophores: a potential drug delivery device. J Phys Chem C. 2007;111(24):8437–42.

Das J, Choi Y, Han JW, Musa A, Reza T, Kim J. Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis. Sci Rep. 2017;7(1):9513. https://doi.org/10.1038/s41598-017-09876-w .

Zholobak NM, Ivanov VK, Shcherbakov AB. Interaction of nanoceria with microorganisms. Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. New York: Elsevier Inc.; 2016. p. 419–50. https://doi.org/10.1016/B978-0-323-42864-4.00012-9 .

Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol. 2006;40(19):6151–6.

Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, et al. An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol. 2012;122–123:133–43.

Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Biol Med. 2013;9(4):558–69. https://doi.org/10.1016/j.nano.2012.10.010 .

Dar MA, Gul R, Alfadda AA, Karim MR, Kim DW, Cheung CL, et al. Size-dependent effect of nanoceria on their antibacterial activity towards Escherichia coli. Sci Adv Mater. 2017;9:1248–53.

Alpaslan E, Geilich BM, Yazici H, Webster TJ. PH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/srep45859 .

Kartsonakis IA, Liatsi P, Daniilidis I, Kordas G. Synthesis, characterization, and antibacterial action of hollow ceria nanospheres with/without a conductive polymer coating. J Am Ceram Soc. 2008;91(2):372–8.

Krishnamoorthy K, Veerapandian M, Zhang LH, Yun K, Kim SJ. Surface chemistry of cerium oxide nanocubes: toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem. 2014;20(5):3513–7. https://doi.org/10.1016/j.jiec.2013.12.043 .

Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, et al. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol. 2011;11(5):4103–8.

Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, Workeneh S, et al. Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS ONE. 2012;7(10):1–13.

Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164–73.

Cuahtecontzi-Delint R, Mendez-Rojas MA, Bandala ER, Quiroz MA, Recillas S, Sanchez-Salas JL. Enhanced antibacterial activity of CeO2 nanoparticles by surfactants. Int J Chem React Eng. 2013;11(2):781–5.

Unnithan AR, Ramachandra Kurup Sasikala A, Sathishkumar Y, Lee YS, Park CH, Kim CS. Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications. Ceram Int. 2014;40(8):12003–12. https://doi.org/10.1016/j.ceramint.2014.04.038 .

Reshma P, Ashwini K. Cerium oxide nanoparticles: synthesis, characterization and study of antimicrobial activity. J Nanomater Mol Nanotechnol. 2017;06(03):2–6.

dos Santos C, Passos Farias I, Reis Albuquerque A, Silva P, CostaOne G, Sampaio F. Antimicrobial activity of nano cerium oxide (IV) (CeO2) against Streptococcus mutans. BMC Proc. 2014;8(Suppl 4):P48.

Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, et al. Plant pathogenic fungus F solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv. 2016;6(48):42720–9.

Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B Biol. 2016;163:77–86. https://doi.org/10.1016/j.jphotobiol.2016.08.013 .

Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, et al. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed Nanotechnol Biol Med. 2010;6(5):698–705. https://doi.org/10.1016/j.nano.2010.01.010 .

Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res. 2013;154(1):156–66.

Rubio L, Annangi B, Vila L, Hernández A, Marcos R. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol. 2016;90(2):269–78.

Kim SJ, Chung BH. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr Polym. 2016;150:400–7. https://doi.org/10.1016/j.carbpol.2016.05.021 .

Ranjbar A, Soleimani Asl S, Firozian F, Heidary Dartoti H, Seyedabadi S, Taheri Azandariani M, et al. Role of cerium oxide nanoparticles in a paraquat-induced model of oxidative stress: emergence of neuroprotective results in the brain. J Mol Neurosci. 2018;66(3):420–7.

Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767–75.

Ciofani G, Genchi GG, Mazzolai B, Mattoli V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj. 2014;1840(1):495–506. https://doi.org/10.1016/j.bbagen.2013.10.009 .

Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, et al. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861(2):386–95. https://doi.org/10.1016/j.bbagen.2016.11.022 .

Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol. 2006;25(6):451–7.

Hijaz M, Das S, Mert I, Gupta A, Al-wahab Z, Tebbe C, et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer. 2016;16(1):220. https://doi.org/10.1186/s12885-016-2206-4 .

Jana SK, Banerjee P, Das S, Seal S, Chaudhury K. Redox-active nanoceria depolarize mitochondrial membrane of human colon cancer cells. J nanoparticle Res. 2014;16(6):2441.

Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int J Toxicol. 2014;33(2):86–97.

Nourmohammadi E, Khoshdel-sarkarizi H, Nedaeinia R, Sadeghnia HR, Hasanzadeh L, Darroudi M, et al. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J Cell Physiol. 2019;234(4):4987–96.

Muhammad F, Wang A, Qi W, Zhang S, Zhu G. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system. ACS Appl Mater Interfaces. 2014;6(21):19424–33.

Li H, Liu C, Zeng YP, Hao YH, Huang JW, Yang ZY, et al. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl Mater Interfaces. 2016;8(46):31510–23.

Das J, Han JW, Choi YJ, Song H, Cho SG, Park C, et al. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: Investigation of the cellular uptake mechanism. Sci Rep. 2016;6(1):29197. https://doi.org/10.1038/srep29197 .

IDF Diabetes Atlas 8th Edition. 2017.

Manna P, Das J, Sil PC. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr Diabetes Rev. 2013;9:237–48.

Khurana A, Tekula S, Godugu C. Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine. 2018;13(15):1905–22.

Shokrzadeh M, Abdi H, Asadollah-Pour A, Shaki F. Nanoceria attenuated high glucose-induced oxidative damage in HepG2 cells. Cell J. 2016;18(1):97–102.

Artimani T, Amiri I, Soleimani Asl S, Saidijam M, Hasanvand D, Afshar S. Amelioration of diabetes-induced testicular and sperm damage in rats by cerium oxide nanoparticle treatment. Andrologia. 2018;50(9):e13089.

Hasanvand D, Amiri I, Soleimani Asl S, Saidijam M, Shabab N, Artimani T. Effects of CeO 2 nanoparticles on the HO-1, NQO1, and GCLC expression in the testes of diabetic rats. Can J Physiol Pharmacol. 2018;96(9):963–9.

Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352(24):2477–86.

Vafaei-Pour Z, Shokrzadeh M, Jahani M, Shaki F. Embryo-protective effects of cerium oxide nanoparticles against gestational diabetes in mice. Iran J Pharm Res. 2018;17(3):964–75.

Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Rahimifard M, Navaei-Nigjeh M, Hassani S, et al. Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Mech Methods. 2012;22(6):476–82.

Hosseini A, Baeeri M, Rahimifard M, Navaei-Nigjeh M, Mohammadirad A, Pourkhalili N, et al. Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol. 2013;32(5):544–53.

Das S, Chigurupati S, Dowding J, Munusamy P, Baer DR, McGinnis JF, et al. Therapeutic potential of nanoceria in regenerative medicine. MRS Bull. 2014;39(11):976–83.

Zhang Q, Ge K, Ren H, Zhang C, Zhang J. Effects of cerium oxide nanoparticles on the proliferation, osteogenic differentiation and adipogenic differentiation of primary mouse bone marrow stromal cells in vitro. J Nanosci Nanotechnol. 2015;15(9):6444–51.

Gagnon J, Fromm KM. Toxicity and protective effects of cerium oxide nanoparticles (Nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur J Inorg Chem. 2015;2015(27):4510–7.

Aalapati S, Ganapathy S, Manapuram S, Anumolu G, Prakya BM. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology. 2014;8(7):786–98.

Wu J, Ma Y, Ding Y, Zhang P, He X, Zhang Z. Toxicity of two different size ceria nanoparticles to mice after repeated intranasal instillation. J Nanosci Nanotechnol. 2018;19(5):2474–82.

Kumari M, Kumari SI, Grover P. Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis. 2014;29(6):467–79.

Ranjbar A, Ghasemi H, Abedian A, Kheiripour N. Cerium oxide nanoparticle modulates hepatic damage, inflammatory and oxidative stress biomarkers in a dose-dependent manner : an in vivo study of rat liver. Nanomed J. 2018;5(4):245–50.

Gagnon C, Bruneau A, Turcotte P, Pilote M, Gagné F. Fate of cerium oxide nanoparticles in natural waters and immunotoxicity in exposed rainbow trout. J Nanomed Nanotechnol. 2018;9(2):489.