Synthesis and barrier properties of poly(ε‐caprolactone)‐layered silicate nanocomposites

Wiley - Tập 33 Số 7 - Trang 1047-1057 - 1995
Phillip B. Messersmith1, Emmanuel P. Giannelis1
1Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853.

Tóm tắt

Abstract

A new polymer‐ceramic nanocomposite has been synthesized consisting of well‐dispersed, two‐dimensional layers of an organically modified mica‐type silicate (MTS) within a degradable poly(ε‐caprolactone) matrix. A protonated amino acid derivative of MTS was used to promote delamination/dispersion of the host layers and initiate ring‐opening polymerization of ε‐caprolactone monomer, resulting in poly(ε‐caprolactone) chains that are ionically bound to the silicate layers. The polymer chains can be released from the silicate surface by a reverse ion‐exchange reaction and were shown to be spectroscopically similar to pure poly(ε‐caprolactone). Thick films of the polymer nanocomposite exhibit a significant reduction in water vapor permeability that shows a linear dependence on silicate content. The permeability of nanocomposite containing as low as 4.8% silicate by volume was reduced by nearly an order of magnitude compared to pure poly(ε‐caprolactone). © 1995 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1007/BF00701240

10.1177/088532829200600303

10.1016/0142-9612(91)90037-B

10.1126/science.2218494

Pitt C. G., 1990, Biodegradable Polymers as Drug Delivery Systems, 71

Potts J. E., 1975, Soc. Plast. Eng. Tech. Pap., 21, 567

10.1002/app.1990.070411116

10.1002/app.1981.070261124

10.1021/ma00057a042

10.1002/polc.5070630108

10.1002/polc.5070630109

10.1016/0032-3861(89)90141-9

10.1016/0032-3861(89)90242-5

10.1002/pol.1982.180200203

10.1016/B978-0-12-546802-2.50018-X

10.1002/polb.1993.090310201

10.1002/macp.1972.021620114

10.1016/0032-3861(81)90304-9

10.1002/macp.1981.021820329

10.1039/jm9920201219

10.1021/cm00032a005

10.1021/cm00036a004

P. B.MessersmithandE. P.Giannelis Chem. Mater. to appear.

10.1557/JMR.1992.2599

10.1557/JMR.1993.1179

10.1002/pola.1993.080311009

10.1007/BF00455608

Yano K., 1991, Polym. Prepr., 32, 65

10.1021/cm00034a014

10.1021/ma00172a026

10.1007/BF00692959

10.1002/adma.19930050603

Saegusa T., 1993, Polym. Prepr., 34, 804

10.1557/JMR.1993.1143

10.1021/cm00013a040

Grim R. E., 1968, Clay Mineralogy

10.1007/BF00595758

10.1007/BF00363333

10.1007/BF01165994

10.1016/0032-3861(92)90804-6

Raque D. C., 1991, Plastics and Composites: Materials Properties, Part Performance, and Process Simulation, 149

Theng B. K. G., 1974, The Chemistry of Clay‐Organic Reactions, 133

10.1021/ma00084a054

10.1016/0095-8522(63)90032-1

10.1021/j150482a012

10.1038/178200a0

Kemnetz S. J., 1989, J. Coatings Tech., 61, 47

P. B.MessersmithandE. P.Giannelis unpublished results.

10.1016/0014-3057(72)90109-7

Johns D. B., 1984, Ring‐Opening Polymerization, 461

Lundberg R. D., 1969, Ring‐Opening Polymerization, 247

10.1080/10601327208056888

10.1002/pola.1993.080310518

10.1021/ma00056a005

10.1016/0032-3861(89)90126-2

10.1021/ja01556a060

10.1021/ja01163a034

10.1002/pol.1970.150080823

10.1002/macp.1965.020820105

Cullity B. D., 1978, Elements of X‐Ray Diffraction, 284

10.1016/S0376-7388(00)82333-9

10.1021/cm00041a002

10.1016/S0376-7388(00)80877-7

The apparent aspect ratio of approximately 70 is the result of curve‐fitting eq. (7) of Ref. 63 to the permeability data shown in Table IV. The use of this equation carries the assumption that permeability through the composite film is dominated by the tortuous diffusion paths created by overlapping silicate layers oriented parallel to the plane of the film.