Synthesis and application of novel GO@ZIF-7 nanocomposite for the removal of lead from aqueous solutions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y.R. Lee, J. Kim, W.S. Ahn, Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering 30(9), 1667–1680 (2013). https://doi.org/10.1007/s11814-013-0140-6
U.M. Ismail, S.A. Onaizi, M.S. Vohra, Aqueous Pb(II) Removal Using ZIF-60: Adsorption Studies, Response Surface Methodology and Machine Learning Predictions. Nanomaterials 13(8) (2023). https://doi.org/10.3390/nano13081402
W.A. Maza, A.J. Morris, Photophysical Characterization of a Ruthenium(II) Tris(2,2′-bipyridine)-Doped Zirconium UiO-67 Metal–Organic Framework. The Journal of Physical Chemistry C 118(17), 8803–8817 (2014). https://doi.org/10.1021/jp501140r
G.R. Xu, Z.H. An, K. Xu, Q. Liu, R. Das, H.L. Zhao, Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 427 (2021). https://doi.org/10.1016/j.ccr.2020.213554
U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding applications of metal-organic frameworks: Zeolite imidazolate framework zif-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal 1(2), 120–127 (Feb. 2011). https://doi.org/10.1021/cs1000625
R. Wu, T. Fan, J. Chen, Y. Li, Synthetic Factors Affecting the Scalable Production of Zeolitic Imidazolate Frameworks. ACS Sustain Chem Eng 7(4), 3632–3646 (2019). https://doi.org/10.1021/acssuschemeng.8b05436
Z. Ebrahimi, M. Rad, V. Safarifard, M. Moradi, Solvent-assisted ligand exchange as a post-synthetic surface modification approach of Zn-based (ZIF-7, ZIF-8) and Co-based (ZIF-9, ZIF-67) zeolitic frameworks for energy storage application. J Mol Liq 364, 120018 (2022). https://doi.org/10.1016/j.molliq.2022.120018
C. Hu, J. Xu, Z. Lu, C. Cao, Y. Wang, Core-shell structured ZIF-7@ZIF-67 with high electrochemical performance for all-solid-state asymmetric supercapacitor. Int J Hydrogen Energy 46(63), 32149–32160 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.225
D. He, H. Zhang, Y. Ren, and H. Qi, Fabrication of a novel microporous membrane based on ZIF-7 doped 1,2-bis(triethoxysilyl)ethane for H2/CO2 separation, Microporous and Mesoporous Materials. 331, no. October 2021, 111674 (2022). doi: https://doi.org/10.1016/j.micromeso.2021.111674
X. Wu, M. Niknam Shahrak, B. Yuan, S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous and Mesoporous Materials 190, 189–196 (2014). https://doi.org/10.1016/j.micromeso.2014.02.016
J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous and Mesoporous Materials. 297, no. January, 110030 (2020). doi: https://doi.org/10.1016/j.micromeso.2020.110030.
K. Kamali, B. Joseph, and C. Narayana, Stability of zeolitic imidazolate frameworks (ZIF-7) under high pressures and its implications on storage applications of ZIFs. J Solid State Chem, 309, no. November 2021, 122973 (2022). doi: https://doi.org/10.1016/j.jssc.2022.122973.
S. Bhatt, A. Malik, A. Soni, B. Moses Abraham, A. Sen, and S. L. Jain, Photocatalytic reductive carboxylation of terminal alkynes with CO2using heterostructured ZIF-7/BiOBr under visible-light illumination, Journal of CO2 Utilization. 67, no. November 2022, 102334, (2023). doi: https://doi.org/10.1016/j.jcou.2022.102334
X. Zhang et al., A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone, Food Chem, 391, no. April, 133235, (2022). doi: https://doi.org/10.1016/j.foodchem.2022.133235
M. Iddrisu and S. A. Onaizi, H2S scavenging performance and rheological properties of water-based drilling fluids comprising ZIF-67. Geoenergy Science and Engineering. 228, no. April, 212007, (2023). doi: https://doi.org/10.1016/j.geoen.2023.212007
M. Iddrisu et al., Waste to a commodity: the utilization of waste cooking oil for the formulation of oil-based drilling mud with H2S scavenging capability bestowed by the incorporation of ZIF-67, Emergent Mater. (2023). doi: https://doi.org/10.1007/s42247-023-00531-x.
M. Iddrisu et al., Harnessing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for enhancing H2S scavenging capacity of waste vegetable oil-based drilling fluids, Emergent Mater. (2023). doi: https://doi.org/10.1007/s42247-023-00535-7
A. Malik and M. Nath, Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microcrystals: A heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes, J Environ Chem Eng. 8, no. 6, 104547, (2020). doi: https://doi.org/10.1016/j.jece.2020.104547
J.O. Ighalo, S. Rangabhashiyam, C.A. Adeyanju, S. Ogunniyi, A.G. Adeniyi, C.A. Igwegbe, Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review. Journal of Industrial and Engineering Chemistry 105, 34–48 (2022). https://doi.org/10.1016/j.jiec.2021.09.029
Y. Feng et al., Research progress of graphene oxide-based magnetic composites in adsorption and photocatalytic degradation of pollutants: A review, Mater Res Bull. 162, no. September 2022, 112207, (2023). doi: https://doi.org/10.1016/j.materresbull.2023.112207.
T. Xiao, D. Liu, Progress in the synthesis, properties and applications of ZIF-7 and its derivatives. Mater Today Energy 14(3), 100357 (2019). https://doi.org/10.1016/j.mtener.2019.100357
A.L. Wani, A. Ara, J.A. Usmani, Lead toxicity: A review. Interdiscip Toxicol 8(2), 55–64 (2015). https://doi.org/10.1515/intox-2015-0009
M. S. Collin et al., Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances, 7, no. March, 100094, (2022). doi: https://doi.org/10.1016/j.hazadv.2022.100094
A. Kumar et al., Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches, Int J Environ Res Public Health. 17, (7), (2020). doi: https://doi.org/10.3390/ijerph17072179
D.C. Marcano et al., Improved Synthesis of Graphene Oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
S. A. Bahadi et al., Chemically versus thermally reduced graphene oxide: effects of reduction methods and reducing agents on the adsorption of phenolic compounds from wastewater, Emergent Mater, (2023). doi: https://doi.org/10.1007/s42247-023-00514-y
W. Morris et al., A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks. The Journal of Physical Chemistry C 116(45), 24084–24090 (Nov. 2012). https://doi.org/10.1021/jp307170a
V. A. Polyakov, V. V Butova, E. A. Erofeeva, A. A. Tereshchenko, and A. V Soldatov, MW Synthesis of ZIF-7. The Effect of Solvent on Particle Size and Hydrogen Sorption Properties, Energies, 13, (23) (2020). doi: https://doi.org/10.3390/en13236306
M. Ebrahimi, M. Mansournia, Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals. Mater Lett 189, 243–247 (2017). https://doi.org/10.1016/j.matlet.2016.12.025
M. He, J. Yao, L. Li, K. Wang, F. Chen, H. Wang, Synthesis of Zeolitic Imidazolate Framework-7 in a Water/Ethanol Mixture and Its Ethanol-Induced Reversible Phase Transition. Chempluschem 78(10), 1222–1225 (2013). https://doi.org/10.1002/cplu.201300193
L. Sarango, J. Benito, I. Gascón, B. Zornoza, J. Coronas, Homogeneous thin coatings of zeolitic imidazolate frameworks prepared on quartz crystal sensors for CO2 adsorption. Microporous and Mesoporous Materials 272, 44–52 (2018). https://doi.org/10.1016/j.micromeso.2018.06.018
P. Zhao et al., Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability. Chemistry of Materials 26(5), 1767–1769 (2014). https://doi.org/10.1021/cm500407f
A. Ibrahim, M.S. Vohra, S.A. Bahadi, S.A. Onaizi, M.H. Essa, T. Mohammed, Heavy metals adsorption onto graphene oxide: effect of mixed systems anresponse surface methodology modeling. Desalination Water Treat 266, 78–90 (2022). https://doi.org/10.5004/dwt.2022.28615
G. Yasin et al., Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on its Morphology, Mechanical Properties, and Erosion-Corrosion Performance. Adv Eng Mater 20(7), 1701166 (2018). https://doi.org/10.1002/adem.201701166
A. Al-Fakih et al., Mechanical, hydration, and microstructural behavior of cement paste incorporating Zeolitic imidazolate Framework-67 (ZIF-67) nanoparticles. Constr Build Mater 348, 128675 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128675
A. Al-Fakih et al., Effects of zeolitic imidazolate framework-8 nanoparticles on physicomechanical properties and microstructure of limestone calcined clay cement mortar. Constr Build Mater, 366, no. August 2022, 130236, (2023). doi: https://doi.org/10.1016/j.conbuildmat.2022.130236
Y. Liu, B. Sajjadi, W. Y. Chen, and R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption, Fuel, 247, no. February, 10–18, (2019). doi: https://doi.org/10.1016/j.fuel.2019.03.011
A. A. Q. Al-Qadri, Q. A. Drmosh, and S. A. Onaizi, Enhancement of bisphenol a removal from wastewater via the covalent functionalization of graphene oxide with short amine molecules. Case Studies in Chemical and Environmental Engineering, 6, no. July, 100233, (2022). doi: https://doi.org/10.1016/j.cscee.2022.100233
F. Pendolino and N. Armata, Synthesis, Characterization and Models of Graphene Oxide BT - Graphene Oxide in Environmental Remediation Process. F. Pendolino and N. Armata, Eds., Cham: Springer International Publishing, 2017, pp. 5–21. doi: https://doi.org/10.1007/978-3-319-60429-9_2
J. Song, X. Wang, C.-T. Chang, Preparation and Characterization of Graphene Oxide. J Nanomater 2014, 276143 (2014). https://doi.org/10.1155/2014/276143
N. Davoodian, A. Nakhaei Pour, M. Izadyar, A. Mohammadi, A. Salimi, S.M. Kamali Shahri, Fischer–Tropsch synthesis using zeolitic imidazolate framework (ZIF-7 and ZIF-8)-supported cobalt catalysts. Appl Organomet Chem 34(9), e5747 (2020). https://doi.org/10.1002/aoc.5747
Y.-T. Zhao, L.-Q. Yu, X. Xia, X.-Y. Yang, W. Hu, Y.-K. Lv, Evaluation of the adsorption and desorption properties of zeolitic imidazolate framework-7 for volatile organic compounds through thermal desorption-gas chromatography. Analytical Methods 10(40), 4894–4901 (2018). https://doi.org/10.1039/C8AY01856A
F. Li, Q. Li, X. Bao, J. Gui, X. Yu, Preparation and gas permeability of ZIF-7 membranes prepared via two-step crystallization technique. Korean Chemical Engineering Research 52(3), 340–346 (2014). https://doi.org/10.9713/kcer.2014.52.3.340
M. Shahmirzaee, A. Hemmati-Sarapardeh, M.M. Husein, M. Schaffie, M. Ranjbar, Magnetic γ-Fe2O3/ZIF-7 Composite Particles and Their Application for Oily Water Treatment. ACS Omega 7(4), 3700–3712 (2022). https://doi.org/10.1021/acsomega.1c06382
N.M.A. Al Lagtah, S.A. Onaizi, A.B. Albadarin, F.A. Ghaith, M.I. Nour, Techno-economic analysis of the effects of heat integration and different carbon capture technologies on the performance of coal-based IGCC power plants. J Environ Chem Eng 7(6), 103471 (2019). https://doi.org/10.1016/j.jece.2019.103471
A. M. Alkadhem, M. A. A. Elgzoly, A. Alshami, and S. A. Onaizi, Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids Surf A Physicochem Eng Asp, 616, no. August 2020, 126258, (2021). doi: https://doi.org/10.1016/j.colsurfa.2021.126258
M. Alshabib, S.A. Onaizi, Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives. Water Air Soil Pollut 231(8), 428 (2020). https://doi.org/10.1007/s11270-020-04806-5
M. Alshabib, S.A. Onaizi, Effects of Surface Active Additives on the Enzymatic Treatment of Phenol and Its Derivatives: a Mini Review. Curr Pollut Rep 5(2), 52–65 (2019). https://doi.org/10.1007/s40726-019-00105-8
S. A. Onaizi, Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of Bisphenol A from wastewater. Biocatal Agric Biotechnol, 32, no. August 2020, 101929, (2021). doi: https://doi.org/10.1016/j.bcab.2021.101929
K. Gautam et al., A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil, Environ Res, 225, no. August 2022, 115592, (2023). doi: https://doi.org/10.1016/j.envres.2023.115592
B. Shi, J. Meng, T. Wang, Q. Li, Q. Zhang, G. Su, The main strategies for soil pollution apportionment: A review of the numerical methods. J Environ Sci (China) 136, 95–109 (2024). https://doi.org/10.1016/j.jes.2022.09.027
M. K. Al-Sakkaf and S. A. Onaizi, Rheology, characteristics, stability, and pH-responsiveness of biosurfactant-stabilized crude oil/water nanoemulsions. Fuel, 307, no. August 2021, 121845, (2022). doi: https://doi.org/10.1016/j.fuel.2021.121845
S.A. Lateef, O.O. Ajumobi, S.A. Onaizi, Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges. Arab J Sci Eng 44(6), 5181–5193 (2019). https://doi.org/10.1007/s13369-019-03800-2
L. He et al., Cooperative Tuneable Interactions between a Designed Peptide Biosurfactant and Positional Isomers of SDOBS at the Air−Water Interface. Langmuir 25(7), 4021–4026 (2009). https://doi.org/10.1021/la802825c
S.A. Onaizi, L. He, A.P.J. Middelberg, Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci 64(17), 3868–3878 (2009). https://doi.org/10.1016/j.ces.2009.05.027
S.A. Onaizi, A.S. Malcolm, L. He, A.P.J. Middelberg, Directed Disassembly of an Interfacial Rubisco Protein Network. Langmuir 23(11), 6336–6341 (2007). https://doi.org/10.1021/la700378q
M. Yin et al., Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption. Chemical Engineering Journal 433(P1), 134441 (2022). https://doi.org/10.1016/j.cej.2021.134441
Y. Huang, Q. Kong, X. Zhang, H. Peng, DMSA-incorporated silsesquioxane-based hybrid polymer for selective adsorption of Pb(II) from wastewater. J Mol Liq 368, 120723 (2022). https://doi.org/10.1016/j.molliq.2022.120723
C. Fu, X. Zhu, X. Dong, P. Zhao, Z. Wang, Study of adsorption property and mechanism of lead(II) and cadmium(II) onto sulfhydryl modified attapulgite. Arabian Journal of Chemistry 14(2), 102960 (2021). https://doi.org/10.1016/j.arabjc.2020.102960
Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, D. Cao, Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol 194(September 2017), 462–469 (2018). https://doi.org/10.1016/j.seppur.2017.11.068
A. Košak, A. Lobnik, M. Bauman, Adsorption of Mercury(II), Lead(II), Cadmium(II) and Zinc(II) from Aqueous Solutions using Mercapto-Modified Silica Particles. Int J Appl Ceram Technol 12(2), 461–472 (2015). https://doi.org/10.1111/ijac.12180
X. Liang et al., Heavy metal adsorbents mercapto and amino functionalized palygorskite: Preparation and characterization. Colloids Surf A Physicochem Eng Asp 426, 98–105 (2013). https://doi.org/10.1016/j.colsurfa.2013.03.014
J. Zhang, Z. Xiong, C. Li, C. Wu, Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J Mol Liq 221, 43–50 (2016). https://doi.org/10.1016/j.molliq.2016.05.054
H. Saleem, U. Rafique, R.P. Davies, Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials 221, 238–244 (2016). https://doi.org/10.1016/j.micromeso.2015.09.043
R. Ricco et al., Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water. J Mater Chem A Mater 3(39), 19822–19831 (2015). https://doi.org/10.1039/c5ta04154f
Y.C. Lee, J.W. Yang, Self-assembled flower-like TiO 2 on exfoliated graphite oxide for heavy metal removal. Journal of Industrial and Engineering Chemistry 18(3), 1178–1185 (2012). https://doi.org/10.1016/j.jiec.2012.01.005
Y. Niu, K. Li, D. Ying, Y. Wang, J. Jia, Novel recyclable adsorbent for the removal of copper(II) and lead(II) from aqueous solution. Bioresour Technol 229, 63–68 (2017). https://doi.org/10.1016/j.biortech.2017.01.007
R. Nagarajah et al., Synthesis of a unique nanostructured magnesium oxide coated magnetite cluster composite and its application for the removal of selected heavy metals. Sep Purif Technol 174, 290–300 (2017). https://doi.org/10.1016/j.seppur.2016.11.008
G. Zhao et al., Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions 40(41), 10945–10952 (2011). https://doi.org/10.1039/C1DT11005E
X. Deng, L. Lü, H. Li, F. Luo, The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183(1–3), 923–930 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.117
K. Ahmad et al., Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food and Chemical Toxicology 149(January), 112008 (2021). https://doi.org/10.1016/j.fct.2021.112008
T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences 23(12), 1989–1998 (2011). https://doi.org/10.1016/S1001-0742(10)60515-3
E. Ramírez, S.G. Burillo, C. Barrera-Díaz, G. Roa, B. Bilyeu, Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution. J Hazard Mater 192(2), 432–439 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.109
A. Ronda, M.A. Martín-Lara, M. Calero, G. Blázquez, Analysis of the kinetics of lead biosorption using native and chemically treated olive tree pruning. Ecol Eng 58, 278–285 (2013). https://doi.org/10.1016/j.ecoleng.2013.07.013
A.P.A. Salvado, L.B. Campanholi, J.M. Fonseca, C.R.T. Tarley, J. Caetano, D.C. Dragunski, Lead(II) adsorption by peach palm waste. Desalination Water Treat 48(1–3), 335–343 (2012). https://doi.org/10.1080/19443994.2012.698839
J. Ji, G. Chen, J. Zhao, Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb (II) from aqueous system. J Hazard Mater 368(December 2018), 255–263 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.035