Tổng hợp và tính chất cảm biến khí acetone của ống nanotube α-Fe2O3

Science in China Series B: Chemistry - Tập 56 - Trang 1722-1726 - 2013
Hao Shan1, ChangBai Liu2, Li Liu1, LianYuan Wang1, ShouChun Li1, XiaoBo Zhang1, XiaoQing Bo1, Xiao Chi1
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
2College of Electronic Science & Engineering, Jilin University, Changchun, China

Tóm tắt

Ống nanotube α-Fe2O3 đã được tổng hợp thành công bằng phương pháp điện di bằng vòi đơn. Kính hiển vi điện tử quét (SEM) được sử dụng để đặc trưng hóa hình thái của ống nanotube α-Fe2O3. Các đặc tính cảm biến khí của ống nanotube α-Fe2O3 đã được nghiên cứu chi tiết. Kết quả cho thấy tính năng cảm biến tương đối tốt đối với acetone ở nhiệt độ 240 °C. Thời gian phản ứng và phục hồi khoảng 3 và 5 giây, tương ứng. Cấu trúc của ống nanotube có lợi cho các tính chất cảm biến khí, giúp tăng tỷ lệ bề mặt so với thể tích của α-Fe2O3 và từ đó tạo điều kiện thuận lợi cho sự chuyển giao khí, qua đó cải thiện hiệu suất cảm biến một cách đáng kể.

Từ khóa

#Ống nanotube α-Fe2O3 #cảm biến khí #acetone #điện di #kính hiển vi điện tử quét

Tài liệu tham khảo

Chen J, Xu L, Li W, Gou X. α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv Mater, 2005, 17: 582–586 Wang Z, Luan D, Madhavi S, Li CM, Lou XWD. α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun, 2011, 47: 8061–8063 Zboril R, Mashlan M, Petridis D. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater, 2002, 14: 969–982 Llusar M, Royo V, Badenes J, Tena M, Monr SG. Nanocomposite Fe2O3-SiO2 inclusion pigments from post-functionalized mesoporous silicas. J Eur Ceram Soc, 2009, 29: 3319–3332 Kay A, Cesar I, Grtzel M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc, 2006, 128: 15714–15721 Cesar I, Kay A, Martinez JAG, Grtzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc, 2006, 128: 4582–4583 Gondal M, Hameed A, Yamani ZH, Suwaiyan A. Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3. Appl Catal A, 2004, 268: 159–167 Zhong Z, Ho J, Teo J, Shen S, Gedanken A. Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem Mater, 2007, 19: 4776–4782 Wu PC, Wang WS, Huang YT, Sheu HS, Lo YW, Tsai TL, Shieh DB, Yeh CS. Porous iron oxide based nanorods developed as delivery nanocapsules. Chem Eur J, 2007, 13: 3878–3885 Chen L, Xie J, Aatre KR, Yancey J, Chetan S, Srivatsan M, Varadan VK. Synthesis of hematite and maghemite nanotubes and study of their applications in neuroscience and drug delivery. In: Proceedings of the Proceedings of SPIE, 2011, p.798008 Zheng W, Li Z, Zhang H, Wang W, Wang Y, Wang C. Electrospin ning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull, 2009, 44: 1432–1436 Hu X, Yu JC, Gong J, Li Q, Li G. α-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater, 2007, 19: 2324–2329 Chen J, Xu L, Li W, Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–586. Sun Z, Yuan H, Liu Z, Han B, Zhang X. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater, 2005, 17: 2993–2997 Cheng W, He J, Sun Z, Peng Y, Yao T, Liu Q, Jiang Y, Hu F, Xie Z, He B, Wei S. Ni-Doped overlayer hematite nanotube: A Highly photoactive architecture for utilization of visible light. J Phys Chem C, 2012, 116: 24060–24067 Zhang W, Li X, Zhao Q, Hou Y, Shen Y, Chen G. Uniform α-Fe2O3 nanotubes fabricated for adsorption and photocatalytic oxidation of naphthalene. Mater Chem Phys, 2011, 129: 683–687 Li D, Mccann JT, Xia Y, Marquez M. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc, 2006, 89: 1861–1869 Shang T, Yang F, Zheng W, Wang C. Fabrication of electrically bistable nanofibers. Small, 2006, 2: 1007–1009 Zhang H, Li Z, Liu L, Xu XR, Wang ZJ, Wang W, Zheng W, Dong B, Wang C. Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers. Sensor Actuat B, 2010, 147:111–115 Wang H, Sun Z, Lu Q, Zeng FW, Su DS. One-Pot Synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property. Small, 2012, 8: 1167–1172 Zhang T, Zeng Y, Fan HT, Wang LJ, Wang R, Fu WY, Yang HB. Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process. J Phys D: Appl Phys, 2009, 42: 045103 Zhang Y, He X, Li J, Miao ZJ, Huang F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensor Actuat B, 2008, 132: 67–73 Zhao Y, Wang H, Lu X, Li X, Yang Y, Wang C. Fabrication of refining mesoporous silica nanofibers via electrospinning. Mater Lett, 2008, 62: 143–146 Li X, Wang C, Li L, Zhao YY, Wang HY, Yang Y. Preparation and dielectric property investigation of ferrocene/poly (vinyl pyrrolidone) composite membranes. J Nanosci Nanotechnol, 2009, 9: 704–708 Wu C, Yin P, Zhu X, OYang CZ, Xie Y. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B, 2006, 110: 17806–17812 Liu L, Guo C, Li S, Wang LY, Dong QY, Li W. Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sensor Actuat B, 2010, 150: 806–810 Qi Q, Zhang T, Liu L, Zheng X, Lu G. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sensor Actuat B, 2009, 141: 174–178 Bagal LK, Patil JY, Mulla IS, Suryavanshi SS. Studies on the resistive response of nickel and cerium doped SnO2 thick films to acetone vapor. Ceram Int, 2012, 38: 6171–6179 Hu L, Li Y. Improved acetone sensing properties of flat sensors based on Co-SnO2 composite nanofibers. Chinese Sci Bull, 2011, 56: 2644–2648 Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensor Actuat B, 2011, 155: 782–788 Wang X, Wang W, Liu Y. Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sensor Actuat B, 2012, 168: 39–45 Song P, Wang Q, Yang Z. Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Mater Lett, 2012, 86: 168–170