Synthesis and Redox Properties of a π-Conjugated Cyclobutadienecobalt Polymer Containing Ferrocenyl Groups
Tóm tắt
The reaction of CpCo(PPh3)2, in which Cp=η
5-cyclopentadienyl, with a π-conjugated diacetylene, FcC≡C–o-C6H4–C≡CFc, in which Fc=ferrocenyl, was found to give a cyclobutadienecobalt mononuclear complex, {η
4-C4Fc2(o-FcC6H4)2}CoCp (1), the crystal structure of which was determined by X-ray crystallography. In contrast, the reaction of CpCo(PPh3)2 with FcC≡C–p-C6H4–C≡CFc affords a cyclobutadienecobalt polymer, [p-C6H4(η
4-C4Fc2)CoCp]
n
(2). The monocobalt complex 1 shows reversible 1e− and 3e− redox waves at E
0′=0.116 and 0.350 V vs Ag/Ag+, and the polymer complex 2 shows two chemically reversible redox waves at E
0′=0.143 and 0.219 V for the oxidation of the ferrocenyl moieties in the cyclic voltammogram. Crystal data are as follows: (1, C65H49CoFe4), triclinic, space group P\={1} (No. 2), a=13.547(4), b=16.197(4), c=11.763(4) Å, α=106.79(2), β=97.93(3), γ=97.12(3), V=2410(1) Å3, Z=2.
Tài liệu tham khảo
H. Nishihara, in Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, ed. (Wiley, New York, 1997), Vol. 2, Chap. 19, and the references therein.
H. Nishihara, T. Shimura, A. Ohkubo, N. Matsuda, and K. Aramaki, Adv. Mater. 5, 752 (1993).
A. Ohkubo, K. Aramaki, and H. Nishihara, Chem. Lett. 271 (1993).
A. Ohkubo, K. Aramaki, and H. Nishihara, Synth. Met. 55, 821 (1993).
I. Matsuoka, K. Aramaki, and H. Nishihara, Mol. Cryst. Liq. Cryst. 285, 199 (1996).
T. Shimura, A. Ohkubo, N. Matsuda, I. Matsuoka, K. Aramaki, and H. Nishihara, Chem. Mater. 8, 1307 (1996).
I. Matsuoka, H. Yoshikawa, M. Kurihara, and H. Nishihara, Synth. Met. 102, 1519 (1999).
S. S. H. Mao, F.-Q. Liu, and T. D. Tilley, J. Am. Chem. Soc. 120, 1193 (1998).
H. Yamazaki and Y. Wakatsuki, Inorg. Synth. 26, 190 (1989).
H. Fink, N. J. Long, A. J. Martin, G. Opromolla, A. J. P. White, D. J. Williams, and P. Zanello, Organometallics 16, 2646 (1997).
(a) L. P. McD. Bushnell, E. R. Evitt, and R. G. Bergman, J. Organomet. Chem. 157, 445 (1978). (b) R. I. Duvlos, Jr., K. O. C. Vollhardt, and L. S. Yee, J. Organomet. Chem. 174, 109, (1979). (c) E. Muller, R. Thomas, and G. Zountsas, Liebigs Ann. Chem. 758, 16 (1972).
K. M. Nicholas, M. O. Nestle, and D. Seyferth, in Transition Metal Organometallics in Organic Synthesis, H. Alper, ed. (Academic Press, New York, 1978), Vol. 2.
Y. Wakatsuki, O. Nomura, K. Kitaura, K. Morokuma, and H. Yamazaki, J. Am. Chem. Soc. 105, 1907 (1983).
M. D. Rausch, G. F. Westover, E. Mintz, G. M. Reisner, I. Bernal, A. Clearfield, and J. M. Troup, Inorg. Chem. 18, 2605 (1979).
H. Schimanke and R. Gleiter, Organometallics 17, 275 (1998).
M. Murata, Masters thesis (University of Tokyo, Tokyo, 1999).
T. Horikoshi, K. Kubo, and H. Nishihara, J. Chem. Soc. Dalton Trans. 3355 (1999).
N. S. Hush, Coord. Chem. Rev. 64, 135 (1985), and references cited therein.
M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).
R. Rulkens, A. J. Lough, I. Manners, S. R. Lovelace, C. Grant, and W. E. Geiger, J. Am. Chem. Soc. 118, 12683 (1996).
T. Hirao, M. Kurashina, K. Aramaki, and H. Nishihara, J. Chem. Soc. Dalton Trans. 2929 (1996).