Synthesis and Initial Evaluation of Solid Acid Catalyst Derived from Spent Coffee Grounds for the Esterification of Oleic Acid and Methanol

Waste and Biomass Valorization - Tập 12 - Trang 4387-4397 - 2021
Ramelito C. Agapay1, Hsin-Chen Liu1, Yi-Hsu Ju1,2,3, Alchris Woo Go2, Artik Elisa Angkawijaya2, Phuong Lan Tran Nguyen4, Chi Thanh Truong5, Kristelle L. Quijote1
1Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
2Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City, Taiwan
3Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei City, Taiwan
4Department of Mechanical Engineering, Can Tho University, Can Tho City, Viet Nam
5Department of Chemical Engineering, Can Tho University, Can Tho City, Viet Nam

Tóm tắt

Spent coffee grounds (SCGs) were utilized in the synthesis of a solid acid catalyst (SAC) through a carbonization–sulfonation process performed at low temperatures (350–500 °C for carbonization and 50–150 °C for sulfonation) and short processing times (1–10 h). The best SAC from the process was able to convert more than 90% of oleic acid to methyl oleate during esterification with methanol (10 mol OA/mol methanol, 80 °C, 7 h, 10%w/w catalyst loading). It was obtained by carbonizing SCG at 400 °C for 2 h and then sulfonating the biochar at 100 °C for 1 h. The reusability tests performed in 4 cycles at the same esterification conditions reveal loss of activity of about 70% of its original state, corresponding to a decrease in total acid and sulfonic acid densities from 4.22 and 3.36 mmol H+/g to 1.33 and 1.16 mmol H+/g, respectively. This process is a considerable improvement from that reported in previous works, having no activating agents in the carbonization process and with significantly shorter times for processing.

Tài liệu tham khảo

Mićić, R., Tomić, M., Martinović, F., Kiss, F., Simikić, M., Aleksic, A.: Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: investigation and optimization of process parameters. Green Process. Synth. 8, 15–23 (2019). https://doi.org/10.1515/gps-2017-0118 Xie, W., Gao, C., Wang, H.: Biodiesel production from low-quality oils using heterogeneous cesium salts of vanadium-substituted polyoxometalate acid catalyst. Catalysts 10, 1–13 (2020). https://doi.org/10.3390/catal10091060 Ambat, I., Srivastava, V., Sillanpää, M.: Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. 90, 356–369 (2018). https://doi.org/10.1016/j.rser.2018.03.069 Quitain, A.T., Sumigawa, Y., Mission, E.G., Sasaki, M., Assabumrungrat, S., Kida, T.: Graphene oxide and microwave synergism for efficient esterification of fatty acids. Energy Fuels 32, 3599–3607 (2018). https://doi.org/10.1021/acs.energyfuels.8b00119 García Martín, J.F., Carrión Ruiz, J., Torres García, M., Feng, C.-H., Álvarez Mateos, P.: Esterification of free fatty acids with glycerol within the biodiesel production framework. Processes 7, 832 (2019). https://doi.org/10.3390/pr7110832 Nongbe, M.C., Ekou, T., Ekou, L., Yao, K.B., Le Grognec, E., Felpin, F.X.: Biodiesel production from palm oil using sulfonated graphene catalyst. Renew. Energy 106, 135–141 (2017). https://doi.org/10.1016/j.renene.2017.01.024 Karmee, S.K.: Technical valorisation of spent coffee grounds and food waste using sulphuric acid immobilised on silica. Biofuels 11, 155–161 (2020). https://doi.org/10.1080/17597269.2017.1378989 Gao, Z., Tang, S., Cui, X., Tian, S., Zhang, M.: Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid. Fuel 140, 669–676 (2015). https://doi.org/10.1016/j.fuel.2014.10.012 Yu, H., Niu, S., Lu, C., Li, J., Yang, Y.: Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel 208, 101–110 (2017). https://doi.org/10.1016/j.fuel.2017.06.122 Ngaosuwan, K., Goodwin, J.G., Prasertdham, P.: A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew. Energy 86, 262–269 (2016). https://doi.org/10.1016/j.renene.2015.08.010 Wang, H., Wang, L., He, S., Xiao, F.-S.: Enhancement of catalytic properties by adjusting molecular diffusion in nanoporous catalysts. In: Advances in Catalysis, pp. 1–47. Elsevier, Amsterdam (2018) Mansir, N., Taufiq-Yap, Y.H., Rashid, U., Lokman, I.M.: Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers. Manag. 141, 171–182 (2017). https://doi.org/10.1016/j.enconman.2016.07.037 Xiu, Y., Chen, A., Liu, X., Chen, C., Chen, J., Guo, L., Zhang, R., Hou, Z.: Selective dehydration of sorbitol to 1,4-anhydro-d-sorbitol catalyzed by a polymer-supported acid catalyst. RSC Adv. 5, 28233–28241 (2015). https://doi.org/10.1039/c5ra01371b Naeem, M.M., Al-Sakkari, E.G., Boffito, D.C., Gadalla, M.A., Ashour, F.H.: One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel (2021). https://doi.org/10.1016/j.fuel.2020.118914 Konwar, L.J., Boro, J., Deka, D.: Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev. 29, 546–564 (2014). https://doi.org/10.1016/j.rser.2013.09.003 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M.: Biodiesel made with sugar catalyst. Nature 438, 177–178 (2005). https://doi.org/10.1038/438177a Kastner, J.R., Miller, J., Geller, D.P., Locklin, J., Keith, L.H., Johnson, T.: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190, 122–132 (2012). https://doi.org/10.1016/j.cattod.2012.02.006 Liu, T., Li, Z., Li, W., Shi, C., Wang, Y.: Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresour. Technol. 133, 618–621 (2013). https://doi.org/10.1016/j.biortech.2013.01.163 Bureros, G.M.A., Tanjay, A.A., Cuizon, D.E.S., Go, A.W., Cabatingan, L.K., Agapay, R.C., Ju, Y.-H.: Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renew. Energy 138, 489–501 (2019). https://doi.org/10.1016/j.renene.2019.01.082 Flores, K.P., Omega, J.L.O., Cabatingan, L.K., Go, A.W., Agapay, R.C., Ju, Y.H.: Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew. Energy 130, 510–523 (2019). https://doi.org/10.1016/j.renene.2018.06.093 International Coffee Organization, Coffee production by exporting countries and world coffee consumption. http://www.ico.org/trade_statistics.asp (2020). Accessed 20 June 2020 Murthy, P.S., Madhava Naidu, M.: Sustainable management of coffee industry by-products and value addition—a review. Resour. Conserv. Recycl. 66, 45–58 (2012). https://doi.org/10.1016/j.resconrec.2012.06.005 Kovalcik, A., Obruca, S., Marova, I.: Valorization of spent coffee grounds: a review. Food Bioprod. Process. 110, 104–119 (2018). https://doi.org/10.1016/j.fbp.2018.05.002 Silva, M.A., Nebra, S.A., Machado Silva, M.J., Sanchez, C.G.: The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy 14, 457–467 (1998). https://doi.org/10.1016/S0961-9534(97)10034-4 Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K., Sharma, B.K.: Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1, 1286–1294 (2013). https://doi.org/10.1021/sc400145w Pujol, D., Liu, C., Gominho, J., Olivella, M.À., Fiol, N., Villaescusa, I., Pereira, H.: The chemical composition of exhausted coffee waste. Ind. Crops Prod. 50, 423–429 (2013). https://doi.org/10.1016/j.indcrop.2013.07.056 Loyao, A.S., Villasica, S.L.G., Dela Peña, P.L.L., Go, A.W.: Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind. Crops Prod. 119, 152–161 (2018). https://doi.org/10.1016/j.indcrop.2018.04.017 Juarez, G.F.Y., Pabiloña, K.B.C., Manlangit, K.B.L., Go, A.W.: Direct dilute acid hydrolysis of spent coffee grounds: a new approach in sugar and lipid recovery. Waste Biomass Valoriz. 9, 235–246 (2018). https://doi.org/10.1007/s12649-016-9813-9 Go, A.W., Conag, A.T., Bertumen, M.M.N.: Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds. Biofuels 10, 193–205 (2019). https://doi.org/10.1080/17597269.2017.1309855 Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., Marova, I.: Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem. 49, 1409–1414 (2014). https://doi.org/10.1016/j.procbio.2014.05.013 Kwon, E.E., Yi, H., Jeon, Y.J.: Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresour. Technol. 136, 475–480 (2013). https://doi.org/10.1016/j.biortech.2013.03.052 Cay, H., Duman, G., Yanik, J.: Two-step gasification of biochar for hydrogen-rich gas production: effect of the biochar type and catalyst. Energy Fuels 33, 7398–7405 (2019). https://doi.org/10.1021/acs.energyfuels.9b01354 Statistics Division - Food and Agriculture Organization of the United Nations, Crop Production and Trade Data, FAOSTAT. http://www.fao.org/faostat/en/#data (2019). Accessed 13 June 2020 Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A.: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon N. Y. 48, 1252–1261 (2010). https://doi.org/10.1016/j.carbon.2009.11.050 Scandinavian Pulp Paper and Board Testing Committee, SCAN-CM 65:02: Pulp total acidic group content - conductometric titration method, SCAN-Test Methods 1–4 (2002) Go, A.W., Tran Nguyen, P.L., Huynh, L.H., Liu, Y.T., Sutanto, S., Ju, Y.H.: Catalyst free esterification of fatty acids with methanol under subcritical condition. Energy 70, 393–400 (2014). https://doi.org/10.1016/j.energy.2014.04.013 Mendaros, C.M., Go, A.W., Nietes, W.J.T., Gollem, B.E.J.O., Cabatingan, L.K.: Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol. Renew. Energy 152, 320–330 (2020). https://doi.org/10.1016/j.renene.2020.01.066 Huang, M., Luo, J., Fang, Z., Li, H.: Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl. Catal. B 190, 103–114 (2016). https://doi.org/10.1016/j.apcatb.2016.02.069 Zhou, Y., Niu, S., Li, J.: Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers. Manag. 114, 188–196 (2016). https://doi.org/10.1016/j.enconman.2016.02.027 Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M., Hayashi, S.: Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem. Mater. 18, 3039–3045 (2006) Estes, C.S., Gerard, A.Y., Godward, J.D., Hayes, S.B., Liles, S.H., Shelton, J.L., Stewart, T.S., Webster, R.I., Webster, H.F.: Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol. Carbon N. Y. 142, 547–557 (2019). https://doi.org/10.1016/j.carbon.2018.10.074 Chellappan, S., Nair, V., Sajith, V., Aparna, K.: Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chin. J. Chem. Eng. (2018). https://doi.org/10.1016/j.cjche.2018.02.034 Zeng, D., Zhang, Q., Chen, S., Liu, S., Wang, G.: Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater. 219, 54–58 (2016). https://doi.org/10.1016/j.micromeso.2015.07.028