Synthesis and Characterization of Fe3O4 Nanoparticles Using Prunus serrulata Leaf Extract

Hüseyin Şengönül1, Oktay Demircan1
1Department of Chemistry, Boğaziçi University, Istanbul, Turkey

Tóm tắt

The interest in the green synthesis of nanoparticles has significantly increased in the last decade as an alternative approach to chemical nanoparticle synthesis. Green synthesis is a technique that produces highly valuable matter by minimizing hazardous chemicals and using environmentally friendly, low-cost, and energy-saving materials, such as plant-based, industrial wastes, and recycled substances. This study aimed to control and understand the synthesis of iron oxide nanoparticles (Fe3O4 NPs) using Prunus serrulata leaf extract as both reducing and capping agents. The mixing ratio between the Fe+3 solution and Prunus serrulata leaf extract, the concentration of Fe+3 solution, pH, and the temperature of the reaction were all varied to monitor particle size and morphology. The synthesized Fe3O4 NPs were characterized by several instrumental analyses including Fourier transform infrared attached with attenuated total reflectance (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Optimum conditions for the synthesized Fe3O4 NPs were determined as 3:1 (Fe+3 solution:Prunus serrulata leaf extract) mixing ratio, 10 mM Fe+3 precursor, pH 6, and 25 °C reaction temperature. Therefore, the synthesized Fe3O4 NPs under optimum conditions were spherical with an average particle size of ~40 nm.

Từ khóa


Tài liệu tham khảo

Christian, P., von der Kammer, F., Baalousha, M., & Hofmann, T. (2008). Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17, 326–343. https://doi.org/10.1007/s10646-008-0213-1 Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 209. https://doi.org/10.3390/nano6110209 Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of nanoparticles by laser ablation: A review. In KONA Powder and Particle Journal. Hosokawa Powder Technology Foundation. https://doi.org/10.14356/kona.2017009 Phan, H. T., & Haes, A. J. (2019). What does nanoparticle stability mean? HHS Public Access. Journal of Physical Chemistry Nanomater Interfaces, 123(27), 16495–16507. https://doi.org/10.1021/acs.jpcc Dikshit, P., Kumar, J., Das, A., Sadhu, S., Sharma, S., Singh, S., et al. (2021). green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902 Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. In Artificial Cells, Nanomedicine and Biotechnology. Taylor and Francis Ltd. https://doi.org/10.1080/21691401.2019.1577878 Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 308, 136331. https://doi.org/10.1016/j.chemosphere.2022.136331 Kujur, S., & Pathak, D. D. (2020). Reduced graphene oxide-immobilized iron nanoparticles Fe(0)@rGO as heterogeneous catalyst for one-pot synthesis of series of propargylamines. Research on Chemical Intermediates, 46(1), 369–384. https://doi.org/10.1007/s11164-019-03955-5 Vinayagam, R., Patnaik, Y., Brijesh, P., Prabhu, D., Quadras, M., Pai, S., et al. (2022). Superparamagnetic hematite spheroids synthesis, characterization, and catalytic activity. Chemosphere, 294, 133730. https://doi.org/10.1016/j.chemosphere.2022.133730 Pugazhendhi, A., Edison, T. N. J. I., Karuppusamy, I., & Kathirvel, B. (2018). Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539(1–2), 104–111. https://doi.org/10.1016/j.ijpharm.2018.01.034 Bilal, M., Mehmood, S., Rasheed, T., & Iqbal, H. M. N. (2019). Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry, 5(3), 42. https://doi.org/10.3390/magnetochemistry5030042 Chamorro, S., Gutiérrez, L., Vaquero, M. P., Verdoy, D., Salas, G., Luengo, Y., et al. (2015). Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology, 26(20), 1–11. https://doi.org/10.1088/0957-4484/26/20/205101 Oz, Y., Arslan, M., Gevrek, T. N., Sanyal, R., & Sanyal, A. (2016). Modular fabrication of polymer brush coated magnetic nanoparticles: Engineering the interface for targeted cellular imaging. ACS Applied Materials and Interfaces, 8(30), 19813–19826. https://doi.org/10.1021/acsami.6b04664 Carbonari, G., Maroni, F., Gabrielli, S., Staffolani, A., Tossici, R., Palmieri, A., & Nobili, F. (2019). Synthesis and characterization of vanillin-templated Fe2O3 nanoparticles as a sustainable anode material for Li-ion batteries. ChemElectroChem, 6(6), 1915–1920. https://doi.org/10.1002/celc.201900189 Soto Hidalgo, K. T., Ortiz-Quiles, E. O., Betancourt, L. E., Larios, E., José-Yacaman, M., & Cabrera, C. R. (2016). Photoelectrochemical solar cells prepared from nanoscale zerovalent iron used for aqueous Cd 2+ removal. ACS Sustainable Chemistry & Engineering, 4(3), 738–745. https://doi.org/10.1021/acssuschemeng.5b00601 Cuong, N. D., Khieu, D. Q., Hoa, T. T., Quang, D. T., Viet, P. H., Lam, T. D., et al. (2015). Facile synthesis of α-Fe 2 O 3 nanoparticles for high-performance CO gas sensor. Materials Research Bulletin, 68, 302–307. https://doi.org/10.1016/j.materresbull.2015.03.069 Rajabi, F., & Luque, R. (2014). Solventless acetylation of alcohols and phenols catalyzed by supported iron oxide nanoparticles. Catalysis Communications, 45, 129–132. https://doi.org/10.1016/j.catcom.2013.11.003 Lee, G., & Kim, B. S. (2014). Biological reduction of graphene oxide using plant leaf extracts. Biotechnology Progress, 30(2), 463–469. https://doi.org/10.1002/btpr.1862 Singh, P., Ahn, S., Kang, J. P., Veronika, S., Huo, Y., Singh, H., et al. (2018). In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artificial Cells, Nanomedicine and Biotechnology, 46(8), 2022–2032. https://doi.org/10.1080/21691401.2017.1408117 Jung, H. A., Kim, A. R., Chung, H. Y., & Chop, J. S. (2002). In vitro antioxidant activity of some selected Prunus species in Korea. Archives of pharmacal research, 25, 865–872. Kouhbanani, M. A. J., Beheshtkhoo, N., Taghizadeh, S., Amani, A. M., & Alimardani, V. (2019). One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(1), 015007. https://doi.org/10.1088/2043-6254/aafe74 Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) Extract. Nanoscale Research Letters, 11(1), 1–7. https://doi.org/10.1186/s11671-016-1498-2 Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) Extract. Nanoscale Research Letters, 11(1), 276. https://doi.org/10.1186/s11671-016-1498-2 Holder, C. F., & Schaak, R. E. (2019, July 23). Tutorial on Powder X-ray diffraction for characterizing nanoscale materials. ACS Nano. American Chemical Society., 13(7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157 Hawn, D. D., & Dekoven, B. M. (1987). Deconvalution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and interface analysis, 10(2‐3), 63–74. Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271. https://doi.org/10.1021/la103190n Han, F., Ma, L., Sun, Q., Lei, C., & Lu, A. (2014). Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Research, 7(11), 1706–1717. https://doi.org/10.1007/s12274-014-0531-y Pan, Z., Lin, Y., Sarkar, B., Owens, G., & Chen, Z. (2019). Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558, 106–114. https://doi.org/10.1016/j.jcis.2019.09.106 Qi, L., Jiaqi, Z., Yimin, D., Danyang, L., Shengyun, W., & Ling, C. (2020). Facile synthesis of 5-aminoisophthalic acid functionalized magnetic nanoparticle for the removal of methylene blue. Journal of Materials Science: Materials in Electronics, 31(1), 457–468. https://doi.org/10.1007/s10854-019-02550-z