Synthesis and Characterization of Biodegradable and Cytocompatible Polyurethane-Egg Shell Derived Hydroxyapatite Biomaterials

Pleiades Publishing Ltd - Tập 63 - Trang 933-941 - 2022
Shaista Parveen1, Shagufta Parveen1
1Institute of Chemistry, University of the Punjab, Lahore, Pakistan

Tóm tắt

Polyurethane is a biocompatible polymer for body tissue regeneration. To improve compatibility as a low-cost source, polyurethane was mixed with hydroxyapatite derived from chicken egg shells. The hydroxyapatite is a key mineral of bone to preserve the structure’s rigidity. The polyurethane was synthesized by prepolymer process and blended by solvent casting technique with egg shell derived hydroxyapatite. The presence of characteristic bands from FTIR spectra confirmed the synthesis of egg shell derived hydroxyapatite, polymer and composites. Egg shell derived hydroxyapatite’s crystallite size was 44 Å with a hexagonal structure. X-ray diffraction supported egg shell derived hydroxyapatite incorporation into the polyurethane matrix. Through egg shell derived hydroxyapatite applying to polyurethane, composites thermal strength has been greatly increased. Scanning electron microscopy has revealed a rough morphology of composites. In phosphate buffered saline, composites had superior biodegradability. The cytocompatible property of synthesized materials was identified in-vitro Methyltetrazolium bromide bioassay. With more egg shell derived hydroxyapatite, the cell viability of the polyurethane-egg shell derived hydroxyapatite composites improved. Such findings indicate a sustainable and economic solution for tissue regeneration to synthesize biodegradable and cytocompatible materials.

Tài liệu tham khảo

I. Oladele, O. Agbabiaka, O. Olasunkanmi, A. O. Balogun, and M. O. Popoola, J. Appl. Biotechnol. Bioeng. 5, 92 (2018). S. Sasikumar and R. Vijayaraghavan, Trends Biomater. Artif. Organs 19, 70 (2006). T. Viana, S. Biscaia, H. A. Almeida, and P. J. Bártolo, in Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, Copenhagen, Denmark, 2014 (Copenhagen, 2014), ESDA2014-20213. D. Zhang, W. Liu, X. D. Wu, X. He, X. Lin, H. Wang, and W. Huang, J. Mater. Sci.: Mater. Med. 30, 59 (2019). N. I. Tkacheva, S. V. Morozov, I. A. Grigor’ev, D. M. Mognonov, and N. A. Kolchanov, Polym. Sci., Ser. B 55, 409 (2013). G. S. Kumar, A. Thamizhavel and E. K. Girija, Mater. Lett. 76, 198 (2012). D. S. R. Krishna, A. Siddharthan, S. K. Seshadri, and T. S. Kumar, J. Mater. Sci.: Mater. Med. 18, 1735 (2007). D. L. Goloshchapov, V. M. Kashkarov, N. A. Rumyantseva, P. V. Seredin, A. S. Lenshin, B. L. Agapov, and E. P. Domashevskaya, Ceram. Int. 39, 4539 (2013). E. M. Rivera, M. Araiza, W. Brostow, V. M. Castano, J. R. Dıaz-Estrada, R. Hernández, and J. R. Rodrıguez, Mater. Lett. 41, 128 (1999). A. R. Yasmin and D. Kalyania, Int. J. Res. Appl. Sci. Eng. Technol. 3, 471 (2015). B. Ashok, S. Naresh, K. O. Reddy, K. Madhukar, J. Cai, L. Zhang, and A. V. Rajulu, Int. J. Polym. Anal. Charact. 19, 245 (2014). J. Yu, Y. Xu, S. Li, G. V. Seifert, M. L. Becker, Biomacromolecules. 18, 4171 (2017). H. D. Jirimali, B. C. Chaudhari, J. C. Khanderay, S. A. Joshi, V. Singh, A. M. Patil, and V. V. Gite, Polym.-Plast. Technol. Eng. 57, 804 (2018). P. Kamalanathan, S. Ramesh, L. T. Bang, A. Niakan, C. Y. Tan, J. Purbolaksono and W. D. Teng, Ceram. Int. 40, 16349 (2014). R. Bardhan, S. Mahata and B. Mondal, Adv. Appl. Ceram. 110, 80 (2011). M. M. Rahman, A. N. Netravali, B. J. Tiimob, V. Apalangya and V. K. Rangari, J. Appl. Polym. Sci. 133, 43477 (2016). G. Gergely, F. Wéber, I. Lukács, A. L. Tóth, Z. E. Horváth, J. Mihály and C. Balázsi, Ceram. Int. 36, 803 (2010). I. Subuki, N. Adnan and R. W. Sharudin, AIP Conf. Proc. 020019,1 (2018). M. Kurańska, K. Polaczek, M. Auguścik-Królikowska, A. Prociak and J. Ryszkowska, Polymer 190, 122164 (2020). Y. N . Zhao, L. Lei, D. X. Ji, and Y. H. Niu, Polym. Sci., Ser. B. 61, 595 (2019). B. Aghajani, E. Karamian, and B. Hosseini, Nanomed. J. 4, 254 (2017). B. C. Ang, N. Ahmad, Z. C. Ong, S. C. Cheok, and H. F. Chan, Pigm. Resin Technol. 45, 313 (2016). C. K. Patil, H. D. Jirimali, J. S. Paradeshi, B. L. Chaudhari, and V. V. Gite, Prog. Org. Coat. 128, 127 (2019). W. Zhao, B. Nolan, H. Bermudez, S. L. Hsu, U. Choudhary, and J. van Walsem, Polymer 193, 122344 (2020). L. Lin, J. Shao and J. Ma, Mater. Lett. 253, 86 (2019). I. M. Davletbaeva, S. E. Dulmaev, O. O. Sazonov, A. M. Gumerov, R. S. Davletbaev, L. R. Valiullin, and R. G. Ibragimov, Polym. Sci., Ser. B. 62, 375 (2020). L. P. Gabriel, M. E. M dos Santos, and A. L. Jardini, Nanomed. Nanotechnol. 13, 201 (2017). K. N. Raftopoulos, I. Łukaszewska, P. A. Klonos, E. Hebda, A. Bukowczan, A. Kyritsis, and K. Pielichowski, Polymer 182, 121821 (2019). S. Patel, N. Gheewala and A. Suthar, Int. J. Pharm. Pharm. Sci. 1, 38 (2009). L. Lin, J. Shao, J. Ma, Q. Zou, J. Li, Y. Zuo, and Y. Li, Mater. Lett. 253, 86 (2019). F. Heidari, M. Razavi, M. Ghaedi, M. Forooghi, M. Tahriri, and L. Tayebi, J. Alloys Compd. 693, 1150 (2017). S. Teixeira, M. A. Rodriguez, P. Pena, A. H. De Aza, S. De Aza, M. P. Ferraz, and F. J. Monteiro, Mater. Sci. Eng., C. 29, 1510 (2009). Z. Cui, Z. Zheng, C. Su, J. Si, Q. Wang, and W. Chen, J. Mater. Sci. 54, 11231 (2019).