Synthesis, Structure, and Properties of a New Tetranuclear Terbium Hydroxotrifluoroacetate

Springer Science and Business Media LLC - Tập 64 - Trang 1126-1136 - 2023
M. A. Burlakova1, M. D. Shaulskaya1, A. A. Anosov1,2, D. M. Tsymbarenko1
1Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
2Faculty of Materials Science, Lomonosov Moscow State University, Moscow, Russia

Tóm tắt

In the reaction of terbium trifluoroacetate Tb(tfa)3(H2O)3 with diethylenetriamine (deta) in air, tetranuclear terbium hydroxotrifluoroacetate [Tb4(OH)4(tfa)3(deta)4(detadcH)2](tfa)4(detaH)(H2O) (Tb4) is obtained and characterized by single crystal X-ray diffraction (XRD), powder XRD, IR spectroscopy, and TGA. The structure of the complex cation with the isolated metal-oxygen cubane core {Tb4(μ-OH)4} and the cation packing motif are analyzed. The thermal behavior of the Tb4 compound in air is studied and its decomposition product is found to be terbium oxide. Tb4 exhibits metal-centered luminescence and can be used as a platform for mixed-metal luminescent materials.

Tài liệu tham khảo

X. Zhou, H. Li, H. Xiao, L. Li, Q. Zhao, T. Yang, J. Zuo, and W. Huang. A microporous luminescent europium metal-organic framework for nitroexplosive sensing. Dalton Trans., 2013, 42, 5718-5723. https://doi.org/10.1039/C3DT00055A H. Yao, G. Calvez, C. Daiguebonne, K. Bernot, Y. Suffren, and O. Guillou. Hetero-hexalanthanide complexes: A new synthetic strategy for molecular thermometric probes. Inorg. Chem., 2019, 58(23), 16180-16193. https://doi.org/10.1021/acs.inorgchem.9b02668 Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen. A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc., 2012, 134, 3979-3982. https://doi.org/10.1021/ja2108036 N. Souri, P. Tian, C. Platas-Iglesias, W. Ka-Leung, A. Nonat, and L. J. Charbonnière. Upconverted photosensitization of Tb visible emission by NIR Yb excitation in discrete supramolecular heteropolynuclear complexes. J. Am. Chem. Soc., 2017, 139(4), 1456-1459. https://doi.org/10.1021/jacs.6b12940 M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos, and N. Stock. Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun., 2015, 51(63), 12578-12581. https://doi.org/10.1039/C5CC02606G C. Pagis, M. Ferbinteanu, G. Rothenberg, and S. Tanase. Lanthanide-based metal organic frameworks: Synthetic strategies and catalytic applications. ACS Catal., 2016, 6(9), 6063-6072. https://doi.org/10.1021/acscatal.6b01935 Y. Liu, K. Mo, and Y. Cui. Porous and robust lanthanide metal-organoboron frameworks as water tolerant Lewis acid catalysts. Inorg. Chem., 2013, 52, 10286-10291. https://doi.org/10.1021/ic400598x A. S. Dinca, A. Mindru, D. Dragancea, C. Tiseanu, S. Shova, S. Cornia, L. M. Carrella, E. Rentschler, M. Affronte, and M. Andruh. Aggregation of \([\text{Ln}_{12}^{\text{III}}]\) clusters by the dianion of 3-formylsalicylic acid. Synthesis, crystal structures, magnetic and luminescence properties. Dalton Trans., 2019, 48(5), 1700-1708. https://doi.org/10.1039/C8DT04602F F. S. Guo, J. D. Leng, J. L. Liu, Z. S. Meng, and M. L. Tong. Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect. Inorg. Chem., 2012, 51(1), 405-413. https://doi.org/10.1021/ic2018314 W.-M. Wang, X.-Z. Li, L. Zhang, J.-L. Chen, J.-H. Wang, Z.-L. Wu, and J.-Z. Cui. A series of [2×2] square grid \(\text{Ln}_{4}^{\text{III}}\) clusters: A large magnetocaloric effect and single-molecule-magnet behavior. New J. Chem., 2019, 43, 7419-7426. https://doi.org/10.1039/C8NJ04454F J.-H. Jia, Q.-W. Li, Y.-C. Chen, J.-L. Liu, and M.-L. Tong. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev., 2019, 378, 365-381. https://doi.org/10.1016/j.ccr.2017.11.012 L. Feng, J. Pang, P. She, J.-L. Li, J.-S. Qin, D.-Y. Du, and H.-C. Zhou. Metal-organic frameworks based on group 3 and 4 metals. Adv. Mater., 2020, 32(44), 202004414. https://doi.org/10.1002/adma.202004414 S. Ma, D. Yuan, X.-S. Wang, and H.-C. Zhou. Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: Syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Inorg. Chem., 2009, 48, 2072-2077. https://doi.org/10.1021/ic801948z M. Agafonov, E. Alexandrov, N. Artyukhova, G. Bekmukhamedov, V. Blatov, V. Butova, Y. Gayfulin, A. Garibyan, Z. Gafurov, Yu. Gorbunova, L. Gordeeva, M. Gruzdev, A. Gusev, G. Denisov, D. Dybtsev, Yu. Enakieva, A. Kagilev, A. Kantyukov, M. Kiskin, K. Kovalenko, A. Kolker, D. Kolokolov, Y. Litvinova, A. Lysova, N. Maksimchuk, Y. Mironov, Yu. Nelyubina, V. Novikov, V. Ovcharenko, A. Piskunov, D. Polyukhov, V. Polyakov, V. Ponomareva, A. Poryvaev, G. Romanenko, A. Soldatov, M. Solovyeva, A. Stepanov, I. Terekhova, O. Trofimova, V. Fedin, M. Fedin, O. Kholdeeva, A. Tsivadze, U. Chervonova, A. Cherevko, V. Shul′gin, E. Shutova, and D. Yakhvarov. Metal-organic frameworks in Russia: From the synthesis and structure to functional properties and materials. J. Struct. Chem., 2022, 63(5), 671-843. https://doi.org/10.1134/S0022476622050018 X.-J. Zheng, J. Xie, X.-J. Kong, L.-S. Long, and L.-S. Zheng. Recent advances in the assembly of high-nuclearity lanyhanide clusters. Coord. Chem. Rev., 2019, 378, 222-236. https://doi.org/10.1016/j.ccr.2017.10.023 S.-R. Li, W.-D. Liu, L.-S. Long, L.-S. Zheng, and X.-J. Kong. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates, 2023, 2, 9140022. https://doi.org/10.26599/POM.2023.9140022 S. K. Langley, N. F. Chilton, I. A. Gass, B. Moubaraki, and K. S. Murray. Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation. Dalton Trans., 2011, 40, 12656-12659. https://doi.org/10.1039/C1DT11750E G. Abbas, Y. Lan, G. E. Kostakis, W. Wernsdorfer, C. E. Anson, and A. K. Powell. Series of isostructural planar lanthanide complexes \([\text{Ln}_{4}^{\text{III}}{{({{\mu }_{\text{3}}}\text{-OH})}_{\text{2}}}{{(\text{mdeaH})}_{\text{2}}}{{(\text{piv})}_{\text{8}}}]\) with single molecule magnet behavior for the Dy4 analogue. Inorg. Chem., 2010, 49(17), 8067-8072. https://doi.org/10.1021/ic1011605 W.-W. Kuang, L.-L. Zhu, Y. Xu, and P.-P. Yang. A tetranuclear holmium compound exhibiting single molecule magnet behavior. Inorg. Chem. Comm., 2015, 61, 169-172. https://doi.org/10.1016/j.inoche.2015.09.007 P.-H. Guo, J.-L. Liu, J.-H. Jia, J. Wang, F.-S. Guo, Y.-C. Chen, W.-Q. Lin, J.-D. Leng, D.-H. Bao, X.-D. Zhang, J.-H. Luo, and M.-L. Tong. Multifunctional \(\text{Dy}_{4}^{\text{III}}\) cluster exhibiting white-emitting, ferroelectric and single-molecule magnet behavior. Chem. - Eur. J., 2013, 19(27), 8769-8773. https://doi.org/10.1002/chem.201300299 D. Roitershtein, A. Vinogradov, K. Lyssenko, and I. Nifant′ev. Self-assembly of heteroleptic tetranuclear carboxylate complexes of yttrium and lanthanides during hydrolysis and oxidation of rare earth homoleptic carboxylates. Inorg. Chem. Commun., 2017, 84, 225-228. https://doi.org/10.1016/j.inoche.2017.08.031 D. Grebenyuk, M. Zobel, M. Polentarutti, L. Ungur, M. Kendin, K. Zakharov, P. Degtyarenko, A. Vasiliev, and D. Tsymbarenko. A family of lanthanide hydroxo carboxylates with 1D polymeric topology and Ln4 butterfly core exhibits switchable supramolecular arrangement. Inorg. Chem., 2021, 60(11), 8049-8061. https://doi.org/10.1021/acs.inorgchem.1c00581 Z. H. Zhu, H. F. Wang, S. Yu, H.-H. Zou, H. L. Wang, B. Yin, and F.-P. Liang. Substitution effects regulate the formation of butterfly-shaped tetranuclear Dy(III) cluster and Dy-based hydrogen-bonded helix frameworks: Structure and magnetic properties. Inorg. Chem., 2020, 59(16), 11640-11650. https://doi.org/10.1021/acs.inorgchem.0c01496 D. Roitershtein, M. Dobrokhodov, A. Vinogradov, M. Minyaev, K. Lyssenko, A. Churakov, N. Datskevich, I. Taidakov, and I. Nifant′ev. Spontaneous association of the terbium cyclopentadienyl complexes under controlled hydrolysis. Russ. J. Coord. Chem., 2018, 44, 410-414. https://doi.org/10.1134/S1070328418060052 D. Roitershtein, M. Minyaev, A. Mikhaylyuk, K. Lyssenko, I. Glukhov, and P. Belyakov. Polyphenylcyclopentadienyl complexes of rare earth elements. Russ. Chem. Bull., 2012, 61, 1726-1732. https://doi.org/10.1007/s11172-012-0238-8 D. John and W. Urland. Synthesis, crystal structure and magnetic behaviour of the new tetrameric gadolinium carboxylate [Gd4(OH)4(CF3COO)8(H2O)4]·2.5H2O. Z. Anorg. Allg. Chem., 2007, 633, 2587-2590. https://doi.org/10.1002/zaac.200700171 A. Rohdea and W. Urland. Synthesis, crystal structures and magnetic behaviour of dimeric and tetrameric gadolinium carboxylates with trichloroacetic acid. Dalton Trans., 2006, 24, 2974-2978. https://doi.org/10.1039/B600368K R. Wang, H. Liu, M. D. Carducci, T. Jin, C. Zheng, and Z. Zheng. Lanthanide coordination with α-amino acids under near physiological pH conditions: Polymetallic complexes containing the cubane-like \([\text{L}{{\text{n}}_{\text{4}}}{{({{\mu }_{\text{3}}}\text{-OH})}_{\text{4}}}]_{8}^{+}\) cluster core. Inorg. Chem., 2001, 40(12), 2743-2750. https://doi.org/10.1021/ic001469y R. Wang, H. D. Selby, H. Liu, M. D. Carducci, T. Jin, Z. Zheng, J. W. Anthis, and R. J. Staples. Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg. Chem., 2002, 41, 278-286. https://doi.org/10.1021/ic010859x W. Huang, Z. Zhang, Y. Wu, W. Chen, D. A. Rotsch, L. Messerle, and Z. Zheng. A systematic study of halide-template effects in the assembly of lanthanide hydroxide cluster complexes with histidine. Inorg. Chem. Front. 2021, 8, 26-34. https://doi.org/10.1039/D0QI01004A W. Huang, W. Chen, Q. Bai, Z. Zhang, M. Feng, and Z. Zheng. Anion-guided stepwise assembly of high-nuclearity lanthanide hydroxide clusters. Angew. Chem., Int. Ed., 2022, 61(33). https://doi.org/10.1002/anie.202205385 D. Grebenyuk, I. Martynova, and D. Tsymbarenko. Self-assembly of hexanuclear lanthanide carboxylate clusters of three architectures. Eur. J. Inorg. Chem., 2019, 26, 3103-3111. https://doi.org/10.1002/ejic.201900643 D. Tsymbarenko, D. Grebenyuk, M. Burlakova, and M. Zobel. Quick and robust PDF data acquisition using a laboratory single-crystal X-ray diffractometer for study of polynuclear lanthanide complexes in solid form and in solution. J. Appl. Crystallogr., 2022, 55(4), 890-900. https://doi.org/10.1107/s1600576722005878 D. Tsymbarenko, D. Grebenyuk, M. Burlakova, and A. Shurkina. Tetranuclear hydroxo complexes of rare-earth elements with the cubane core as products of self-controlled hydrolysis. Russ. J. Coord. Chem., 2022, 48(3), 164-172. https://doi.org/10.1134/S1070328422030058 D. Grebenyuk, N. Ryzhkov, and D. Tsymbarenko. Novel mononuclear mixed ligand complexes of heavy lanthanide trifluoroacetates with diethylenetriamine. J. Fluor. Chem., 2017, 202, 82-90. https://doi.org/10.1016/j.jfluchem.2017.08.014 DIFFRAC.TOPAS, Ver. 5. Karlsruhe, Germany: Bruker AXS, 2014. G. M. Sheldrick. SHELXTL Ver. 5.10: Structure Determination Software Suite. Madison, Wisconsin, USA: Bruker AXS, 1998. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930 G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218 L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985 A. Shevchenko, A. Anosov, D. Blinnikova, D. Grebenyuk, and D. Tsymbarenko. Single-source precursors for chemical solution deposition of up-converting NaLnF4 thin films. Metals, 2022, 12(3), 488. https://doi.org/10.3390/met12030488 M. Kendin and D. Tsymbarenko. Synthesis and thermal decomposition of rare earth isovalerates and their solutions with amines as an effective pathway to obtain oxide nanomaterials. J. Anal. Appl. Pyrolysis, 2019, 140, 367-375. https://doi.org/10.1016/j.jaap.2019.04.016 J. Zhang, R. B. Von Dreele, and L. Eyring. The structures of Tb7O12 and Tb11O20. J. Solid State Chem., 1993, 104(1), 21-32. https://doi.org/10.1006/jssc.1993.1138 A. Rastorguev, A. Remova, G. Romanenko, N. Sokolova, V. Belyi, and S. Larionov. Dimeric structure and electronic conformation of Tb(CF3COO)3·3H2O according to luminescence data. J. Struct. Chem., 2001, 42(5), 759-766. https://doi.org/10.1023/A:1017965316032 H. Yao, G. Calvez, C. Daiguebonne, K. Bernot, Y. Suffren, and O. Guillou. Hetero-hexalanthanide complexes: A new synthetic strategy for molecular thermometric probes. Inorg. Chem., 2019, 58(23), 16180-16193. https://doi.org/10.1021/acs.inorgchem.9b02668