Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks

Accounts of Chemical Research - Tập 43 Số 1 - Trang 58-67 - 2010
Anh Phan1, Christian J. Doonan2, Fernando J. Uribe‐Romo2, Carolyn B. Knobler2, M. O’Keeffe2, Omar M. Yaghi2
1Center for Reticular Chemistry at California NanoSystems Institute, Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
2Center for Reticular Chemistry at California NanoSystems Institute, Department of Chemistry and Biochemistry, University of California—Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095

Tóm tắt

Từ khóa


Tài liệu tham khảo

Maesen, T. L. M.; Marcus, B.InIntroduction to Zeolite Science and Practice;van Bekkum, H., Flanigen, E. M., Jacobs, P. A., Jansen, J. C., Eds.Elsevier:Amsterdam, 2001; pp1−9.

Liu Y., 2006, Chem. Commun., 1488, 10.1039/b600188m

Huang X.-C., 2006, Angew. Chem., Int. Ed., 45, 1557, 10.1002/anie.200503778

Zhang J.-P., 2006, Chem. Commun., 1689, 10.1039/b516367f

Rettig S. J., 1999, Can. J. Chem., 77, 425, 10.1139/v99-063

Tian Y.-Q., 2002, Angew. Chem., Int. Ed., 41, 1384, 10.1002/1521-3773(20020415)41:8<1384::AID-ANIE1384>3.0.CO;2-6

Tian Y.-Q., 2003, Chem.—Eur. J., 9, 5673, 10.1002/chem.200304957

Masciocchi N., 2001, Inorg. Chem., 40, 5897, 10.1021/ic010384+

Huang X., 2003, Chin. Sci. Bull., 48, 1531

Park K. S., 2006, Proc. Natl. Acad. Sci. U.S.A., 103, 10186, 10.1073/pnas.0602439103

Zhang J., 2009, Angew. Chem., Int. Ed., 48, 2542, 10.1002/anie.200804169

Hayashi H., 2007, Nat. Mater., 6, 501, 10.1038/nmat1927

Banerjee R., 2008, Science, 319, 939, 10.1126/science.1152516

Wang B., 2008, Nature, 453, 207, 10.1038/nature06900

Banerjee R., 2009, J. Am. Chem. Soc., 131, 3875, 10.1021/ja809459e

Baerlocher Ch., 2007, Atlas of Zeolite Framework Types, 6

Baburin I. A., 2008, J. Phys. Chem. B, 112, 9437, 10.1021/jp801681w

Wang Z., 2009, Chem. Soc. Rev., 38, 1315, 10.1039/b802258p

Ingleson M. J., 2008, Chem. Commun., 2680, 10.1039/b718367d

Morris W., 2008, J. Am. Chem. Soc., 130, 12626, 10.1021/ja805222x

Sircar S., 2006, Ind. Eng. Chem. Res., 45, 5435, 10.1021/ie051056a

Llewellyn P. L., 2008, Langmuir, 24, 7245, 10.1021/la800227x

Millward A. R., 2005, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032

Wu H., 2007, J. Am. Chem. Soc., 129, 5314, 10.1021/ja0691932

Tian Y.-Q., 2007, Chem.—Eur. J., 13, 4146, 10.1002/chem.200700181

Lehnert V. R., 1980, Z. Anorg. Allg. Chem., 464, 187, 10.1002/zaac.19804640117

Sturm M., 1975, Acta Crystallogr., 31, 2369, 10.1107/S0567740875007649

Masciocchi N., 2003, Chem. Commun., 2018, 10.1039/b302840b

Tian Y.-Q., 2004, Eur. J. Inorg. Chem., 1039, 10.1002/ejic.200300560

Tian Y.-Q., 2004, Inorg. Chem., 43, 4631, 10.1021/ic049713z

Huang X.-C., 2004, Chem. Commun., 1100, 10.1039/b401691b

Rettig S. J., 1997, J. Am. Chem. Soc., 119, 8675, 10.1021/ja971558i

Rettig S. J., 2000, J. Chem. Soc., Dalton Trans., 3931, 10.1039/b002574g

Liu Y., 2008, Angew. Chem., Int. Ed., 47, 8446, 10.1002/anie.200802680

Wu T., 2008, Chem. Mater., 20, 7377, 10.1021/cm802400f

Muller-Buschbaum K., 2006, Z. Naturforsch. B: Chem. Sci., 61, 792, 10.1515/znb-2006-0704

Fu Y.-M., 2007, Inorg. Chem. Commun., 10, 720, 10.1016/j.inoche.2007.03.011

Lorente M. A. M., 1995, Inorg. Chem., 34, 5346, 10.1021/ic00125a039

Han J.-Y., 2005, Acta Crystallogr., 61, m2667−m2669

Lehnert V. R., 1978, Z. Anorg. Allg. Chem., 444, 91, 10.1002/zaac.19784440109

Spek A. L., 1983, Acta Crystallogr., 39, 1212

Wu T., 2008, Chem.—Eur. J., 14, 7771, 10.1002/chem.200800736

Method of analysis: The Cambridge Structural Database was searched with the criterion of obtaining all the structures that contain the metal−bi-imidazole; the metal is surrounded by at least four nitrogens, two of which are part of the imidazole ring. Each imidazole is bound to two metals through the nitrogen atoms with no discrimination according to the nature of the bonds. Recently published compounds were obtained from the CCDC deposition number. This search gave a total of 172 structures, which were analyzed with theTOPOS4.0 package [Blatov, V. A.; Carlucci, L.; Ciani, G.; Proserpio, D. M.Interpenetrating Metal-Organic and Inorganic 3D Net Works: A Computer-Aided Systematic Investigation. Part I Analysis of the Cambridge Structural Database.CrystEngComm 2004, 6, 377−395]. For each entry, all doubled atoms were eliminated, and the adjacency matrix was calculated using the AutoCN routine with the default parameters and excluding hydrogen bonds, van der Waals, and special contacts. The obtained database was filtered to eliminate all the zero- one- and two-dimensional structures; 105 structures were found to be three-dimensional. The adjacency matrix was then simplified by calculating the centroids with theADSroutine for all non-metal atoms, and then all 0- 1- and 2-connected atoms were eliminated, obtaining a database that includes only the reduced graphs of the nets. The topology of the reduced structures was obtained using theADSroutine with the default parameters, selecting the “classification” option for only valence bonds. In some cases, the topology was obtained usingSystre 1.1.5[Delgado-Friedrichs, O.; O’Keeffe, M.Identification of, and Symmetry Computation for Crystal Nets.Acta Crystallogr. 2003, A59, 351−360].

O’Keeffe M., 2008, Acc. Chem. Res., 41, 1782, 10.1021/ar800124u