Synthesis Gas Production by Partial Oxidation of Methane and Dry Reforming of Methane in the Presence of Novel Ni–Co/MFI Catalysts
Tóm tắt
Catalysts based on Ni, Co, and NiCo supported on MFI zeolites for the partial oxidation of methane and dry reforming of methane to synthesis gas have been synthesized and studied. The total metal content in the catalysts is 2 wt %. A commercial zeolite with a binder (alumina) and a binder-free zeolite synthesized by an accelerated microwave-assisted hydrothermal method are used as supports. The synthesis gas yield is 97% in the presence of Ni and NiCo catalysts supported on the MFI zeolite synthesized by the microwaveassisted hydrothermal method. The simultaneous presence of Ni and Co in the catalyst makes the sample resistant to coking during dry reforming of methane, whereas the Ni catalyst is characterized by the formation of a significant amount of carbon fibers.
Tài liệu tham khảo
A. Holmen, Catal. Today, 142, (2009).
B. C. Enger, R. Lødeng, and A. Holmen, Appl. Catal., A 346, (2008).
S. Zeng, X. Zhang, X. Fu, et al., Appl. Catal., B 136/137, 308 (2013).
Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger’s Vision Today, Ed. by M. Bertau, H. Offermanns, L.Plass, (Springer, Heidelberg, 2014).
L. M. T. S. Rodrigues, R. B. Silva, M. G. C. Rocha, et al., Catal. Today 197, 137 (2012).
V. S. Arutyunov, Oxidative Conversion of Natural Gas (KRASAND, Moscow, 2011).
K. A. Chalupka, W. K. Jozwiak, J. Rynkowski, et al., Appl. Catal., B 146, 227 (2014).
A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Fuel Process. Technol. 148, 128 (2016).
A. G. Dedov, A. S. Loktev, D. A. V. K. Ivanov, et al., Dokl. Phys. Chem. 461 (2), 73 (2015).
A. I. Osman, J. Meudal, F. Laffir, et al. Appl. Catal., B 212, 68 (2017).
J.-S. Chang, S.-E. Park, and H. Chon, Appl. Catal., A 145, 111 (1996).
J. Estephane, S. Aouad, S Hany., et al. Int. J. Hydrogen Energy 40, 9201 (2015).
A. Luengnaruemitchai and A. Kaengsilalai, Chem. Eng. J. 144, 96 (2008).
G. Moradi, F. Khezeli, and H. Hemmati, J. Nat. Gas Sci. Eng. 33, 657 (2016).
A. N. Pinheiro, A. Valentini, J. M. Sasaki, and A. C. Oliveira, Appl. Catal., A 355, 156 (2009).
P. Frontera, A. Aloise, A. Macario, et al., Top. Catal. 53, 265 (2010).
J. Estephane, M. Ayoub, Kh. Safieh, et al., C. R. Chim. 18, 277 (2015).
M. Abdollahifar, M. Haghighi, and M. Sharifi, Energy Conv. Manage. 103, 1101 (2015).
C. Dai, S. Zhang, A. Zhang, et al., J. Mater. Chem. A 3, 16461 (2015).
P. Frontera, A. Macario, A. Aloise, et al., Catal. Today 218/219, 18 (2013).
S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, ACS Catal. 3, 1855 (2013).
N. Wang, K. Shen, L. Huang, et al., ACS Catal. 3, 1638 (2013).
A. G. Dedov, A. S. Loktev, D. A. Levchenko, et al. Theor. Found. Chem. Eng. 49, 502 (2015).
A. G. Dedov, A. S. Loktev, E. A. Isaeva, et al. Pet. Chem. 57, 678 (2017).