Synthesis, Antiaggregant, and Antioxidant Activity of 2-{[1-iso-butyl-3-methyl-7-(thietanyl-3)xanthin-8-yl]thio}acetic Acid Salts

Pharmaceutical Chemistry Journal - Tập 54 - Trang 891-896 - 2020
F. A. Khaliullin1, Zh. K. Mamatov1, G. A. Timirkhanova1, A. V. Samorodov1, L. I. Bashirova2
1Bashkir State Medical University, Ministry of Health of the Russian Federation, Ufa, Russia
2Izhevsk State Medical Academy, Ministry of Health of the Russian Federation, Izhevsk, Russia

Tóm tắt

8-Bromo-1-iso-butyl-3-methyl-7-(thietanyl-3)xanthine (II) was synthesized by alkylation of 8-bromo-3-methyl-7-(thietanyl-3)xanthine (I) with isobutyl bromide. Nucleophilic substitution of II with thioglycolic acid gave 2{[1-iso-butyl-3-methyl-7-(thietanyl-3)xanthin-8-yl]thio}acetic acid (III). A series of water-soluble salts of 2{[1-iso-butyl-3-methyl-7-(thietanyl-3)xanthin-8-yl]thio}acetic acid (IVa-h) were synthesized by reaction of III with organic and inorganic bases. Compounds possessing antiaggregant activity on the level of acetylsalicylic acid were found among salts IV. All obtained compounds except for IVa and IVc suppressed lipid peroxidation less than ascorbic acid. However, all synthesized compounds suppressed generation of reactive oxygen species by phagocytes, in contrast to ascorbic acid.

Tài liệu tham khảo

D. T. Schmidt, N. Watson, G. Dent, et al., Br. J. Pharmacol., 131(8), 1607 – 1618 (2000). S. Cappelletti, P. Daria, G. Sani, and M. Aromatario, Curr. Neuropharmacol., 13(1), 71 – 88 (2015). P. J. Barnes, Am. J. Respir. Crit. Care Med., 188(8), 901 – 906 (2013). M. D. Mashkovskii, Drugs [in Russian], Novaya Volna, Umerenkov, Moscow (2014). A. V. Gulevskaya and A. F. Pozharskii, Khim. Geterotsikl. Soedin., 27(1), 1 – 23 (1991). D. A. Babkov, A. N. Geisman, A. L. Khandazhinskaya, and M. S. Novikov, Usp. Khim., 85(3), 308 – 334 (2016). N. Singh, A. K. Shreshtha, M. S. Thakur, and S. Patra, Heliyon, 4(10), e00829 (2018). A. A. Spasov, F. A. Khaliullin, D. A. Babkov, et al., Khim.-farm. Zh., 51(7), 13 – 19 (2017). R. Baetta and A. Corsini, Drugs, 71(11), 1441 – 1467 (2011). S. H. Havale and P. Manojit, Bioorg. Med. Chem., 17, 1783 – 1802 (2009). F. A. Khaliullin, Yu. V. Shabalina, G. G. Davlyatova, and L. A. Valeeva, Khim-farm. Zh., 51(12), 3 – 6 (2017). L. A. Valeeva, G. G. Davlyatova, Yu. V. Shabalina, et al., Khim.-farm. Zh., 50(6), 8 – 11 (2016). A. Swierczek, E. Wyska, K. Pociecha, et al., Xenobiotica, 49(10), 1209 – 1220 (2019). Yu. V. Shabalina, F. A. Khaliullin, A. A. Spasov, et al., Khim-farm. Zh., 47(3), 27 – 29 (2013). F. A. Khaliullin, Yu. V. Shabalina, A. V. Samorodov, et al., Khim.-farm. Zh., 52(1), 29 – 32 (2018). Yu. V. Shabalina, A. V. Samorodov, F. A. Khaliullin, et al., Med. Vestn. Bashk., 12(6), 63 – 67 (2017). F. A. Khaliullin, Yu. V. Shabalina, A. V. Samorodov, et al., Med. Vestn. Bashk., 11(5), 140 – 144 (2016). A. V. Samorodov, F. Kh. Kamilov, F. A. Khaliullin, et al., Vopr. Biol., Med. Farm. Khim., No. 8, 10 – 17 (2016). J. A. Schroeder, J. D. Ruta, J. S. Gordon, et al., Behav. Pharmacol., 23(3), 310 – 314 (2012). Y. Usachev and A. Verkhratsky, Cell Calcium, 17(3), 197 – 206 (1995). Q. Huai, H. Wang, and W. Zhang, Proc. Natl. Acad. Sci. USA, 101(26), 9624 – 9629 (2004). T. P. Geisbuhler, T. L. Shwager, and H. D. Ervin, Biochem. Pharmacol., 63(11), 2055 – 2062 (2002). V. B. Bhat and K. M. Madyastha, Biochem. Biophys. Res. Commun., 288(5), 1212 – 1217 (2001). S. Constantin, F. G. Lupascu, M. Apotrosoaei, et al., Chem. Cent. J., 11(12), (2017). F. G. Lupascu, O. M. Dragostin, L. Foia, et al., Molecules, 18(8), 9684 – 9703 (2013). F. A. Khaliullin, V. A. Kataev, and Yu. V. Strokin, Khim. Geterotsikl. Soedin., No. 4, 516 – 518 (1991). A. N. Mironov (ed.), Handbook for Preclinical Drug Trials [in Russian], Vol. 1, Grif i K, Moscow (2012), pp. 453 – 458. R. R. Farkhutdinov and S. I. Tevdoradze, Methods for Studying Chemiluminescence of Biological Material in a KhL-003 Chemiluminometer. Methods for Evaluating Antioxidant Activity of Biologically Active Compounds [in Russian], RUDN, Moscow (2005), pp. 147 – 154.