Syntheses and bandgap alterations of MoS2 induced by stresses in graphene-platinum substrates
Tài liệu tham khảo
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Gupta, 2015, Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44, 10.1016/j.pmatsci.2015.02.002
Bradley, 2015, Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures, Nano Lett., 15, 2594, 10.1021/acs.nanolett.5b00160
Ugeda, 2014, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater., 13, 1091, 10.1038/nmat4061
Ugeda, 2016, Characterization of collective ground states in single-layer NbSe2, Nat. Phys., 12, 92, 10.1038/nphys3527
Shi, 2015, All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures, Adv. Mater., 27, 7086, 10.1002/adma.201503342
Zhang, 2017, Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils, ACS Nano, 11, 4328, 10.1021/acsnano.7b01537
Zhang, 2016, Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures, Nat. Commun., 7, 13843, 10.1038/ncomms13843
Wan, 2017, Temperature-related morphological evolution of MoS2 domains on graphene and electron transfer within heterostructures, Small, 13, 1603549, 10.1002/smll.201603549
Ago, 2015, Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene, ACS Appl. Mater. Interfaces, 7, 5265, 10.1021/am508569m
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Ouyang, 2017, MoS2 heterostructure with tunable phase stability: strain induced interlayer covalent bond formation, Nanoscale, 9, 8126, 10.1039/C7NR02070H
Zan, 2016, Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures, Phys. Chem. Chem. Phys., 18, 3159, 10.1039/C5CP06029J
Le, 2016, Interlayer interactions in van der Waals heterostructures: electron and phonon properties, ACS Appl. Mater. Interfaces, 8, 6286, 10.1021/acsami.6b00285
Shin, 2016, Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain, Adv. Mater., 28, 9378, 10.1002/adma.201602626
Lloyd, 2016, Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2, Nano Lett., 16, 5836, 10.1021/acs.nanolett.6b02615
Castellanos-Gomez, 2013, Local strain engineering in atomically thin MoS2, Nano Lett., 13, 5361, 10.1021/nl402875m
Conley, 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett., 13, 3626, 10.1021/nl4014748
Manzeli, 2015, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett., 15, 5330, 10.1021/acs.nanolett.5b01689
He, 2016, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett., 109, 173105, 10.1063/1.4966218
Oakes, 2016, Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity, Nat. Commun., 7, 11796, 10.1038/ncomms11796
Zhang, 2017, Epitaxial growth and intrinsic nature of molybdenum disulfide on graphite, APEX, 10, 055201, 10.7567/APEX.10.055201
Koós, 2016, STM study of the MoS2 flakes grown on graphite: a model system for atomically clean 2D heterostructure interfaces, Carbon, 105, 408, 10.1016/j.carbon.2016.04.069
Zhang, 2014, Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett., 14, 2443, 10.1021/nl501133c
Liu, 2015, Rotationally commensurate growth of MoS2 on epitaxial graphene, ACS Nano, 10, 1067, 10.1021/acsnano.5b06398
Miwa, 2015, Van der Waals epitaxy of two-dimensional MoS2/Graphene heterostructures in ultrahigh vacuum, ACS Nano, 9, 6502, 10.1021/acsnano.5b02345
Lin, 2015, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun., 6, 7311, 10.1038/ncomms8311
Shi, 2012, Vander Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett., 12, 2784, 10.1021/nl204562j
Wan, 2016, Interlayer coupling of a direct van der Waals epitaxial MoS2/graphene heterostructure, RSC Adv., 6, 323, 10.1039/C5RA22768B
Shaina, 2016, Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions, J. Phys. Condens. Matter, 28, 085301, 10.1088/0953-8984/28/8/085301
Merino, 2011, Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces, ACS Nano, 5, 5627, 10.1021/nn201200j
Kiraly, 2015, Electronic and mechanical properties of graphene–germanium interfaces grown by chemical vapor deposition, Nano Lett., 15, 7414, 10.1021/acs.nanolett.5b02833
Robinson, 2009, Raman topography and strain uniformity of large-area epitaxial graphene, Nano Lett., 9, 964, 10.1021/nl802852p
Corro, 2015, Strain assessment in graphene through the Raman 2D' mode, J. Phys. Chem. C, 119, 25651, 10.1021/acs.jpcc.5b09643
Horcas, 2007, WSXM: a Software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 013705, 10.1063/1.2432410
Gao, 2011, Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition, ACS Nano, 5, 9194, 10.1021/nn203440r
Zhan, 2017, Centimeter-scale nearly single-crystal monolayer MoS2 via self-limiting vapor deposition epitaxy, J. Phys. Chem. C, 121, 4703, 10.1021/acs.jpcc.6b12785
Zhou, 2016, Periodic modulation of the doping level in striped MoS2 superstructures, ACS Nano, 10, 3461, 10.1021/acsnano.5b07545
Zhang, 2014, Three-dimensional spirals of atomic layered MoS2, Nano Lett., 14, 6418, 10.1021/nl502961e