Syntheses and bandgap alterations of MoS2 induced by stresses in graphene-platinum substrates

Carbon - Tập 131 - Trang 26-30 - 2018
Wen Wan1,2, Li Chen1, Linjie Zhan1, Zhenwei Zhu1, Yinghui Zhou1, Tienmo Shih1, Shengshi Guo1, Junyong Kang1, Han Huang3, Weiwei Cai1
1Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
2Donostia International Physics Center DIPC, E-20018 San Sebastián, Spain
3Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

Tài liệu tham khảo

Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805 Gupta, 2015, Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44, 10.1016/j.pmatsci.2015.02.002 Bradley, 2015, Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures, Nano Lett., 15, 2594, 10.1021/acs.nanolett.5b00160 Ugeda, 2014, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater., 13, 1091, 10.1038/nmat4061 Ugeda, 2016, Characterization of collective ground states in single-layer NbSe2, Nat. Phys., 12, 92, 10.1038/nphys3527 Shi, 2015, All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures, Adv. Mater., 27, 7086, 10.1002/adma.201503342 Zhang, 2017, Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils, ACS Nano, 11, 4328, 10.1021/acsnano.7b01537 Zhang, 2016, Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures, Nat. Commun., 7, 13843, 10.1038/ncomms13843 Wan, 2017, Temperature-related morphological evolution of MoS2 domains on graphene and electron transfer within heterostructures, Small, 13, 1603549, 10.1002/smll.201603549 Ago, 2015, Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene, ACS Appl. Mater. Interfaces, 7, 5265, 10.1021/am508569m Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385 Ouyang, 2017, MoS2 heterostructure with tunable phase stability: strain induced interlayer covalent bond formation, Nanoscale, 9, 8126, 10.1039/C7NR02070H Zan, 2016, Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures, Phys. Chem. Chem. Phys., 18, 3159, 10.1039/C5CP06029J Le, 2016, Interlayer interactions in van der Waals heterostructures: electron and phonon properties, ACS Appl. Mater. Interfaces, 8, 6286, 10.1021/acsami.6b00285 Shin, 2016, Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain, Adv. Mater., 28, 9378, 10.1002/adma.201602626 Lloyd, 2016, Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2, Nano Lett., 16, 5836, 10.1021/acs.nanolett.6b02615 Castellanos-Gomez, 2013, Local strain engineering in atomically thin MoS2, Nano Lett., 13, 5361, 10.1021/nl402875m Conley, 2013, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett., 13, 3626, 10.1021/nl4014748 Manzeli, 2015, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett., 15, 5330, 10.1021/acs.nanolett.5b01689 He, 2016, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett., 109, 173105, 10.1063/1.4966218 Oakes, 2016, Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity, Nat. Commun., 7, 11796, 10.1038/ncomms11796 Zhang, 2017, Epitaxial growth and intrinsic nature of molybdenum disulfide on graphite, APEX, 10, 055201, 10.7567/APEX.10.055201 Koós, 2016, STM study of the MoS2 flakes grown on graphite: a model system for atomically clean 2D heterostructure interfaces, Carbon, 105, 408, 10.1016/j.carbon.2016.04.069 Zhang, 2014, Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett., 14, 2443, 10.1021/nl501133c Liu, 2015, Rotationally commensurate growth of MoS2 on epitaxial graphene, ACS Nano, 10, 1067, 10.1021/acsnano.5b06398 Miwa, 2015, Van der Waals epitaxy of two-dimensional MoS2/Graphene heterostructures in ultrahigh vacuum, ACS Nano, 9, 6502, 10.1021/acsnano.5b02345 Lin, 2015, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures, Nat. Commun., 6, 7311, 10.1038/ncomms8311 Shi, 2012, Vander Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett., 12, 2784, 10.1021/nl204562j Wan, 2016, Interlayer coupling of a direct van der Waals epitaxial MoS2/graphene heterostructure, RSC Adv., 6, 323, 10.1039/C5RA22768B Shaina, 2016, Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions, J. Phys. Condens. Matter, 28, 085301, 10.1088/0953-8984/28/8/085301 Merino, 2011, Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces, ACS Nano, 5, 5627, 10.1021/nn201200j Kiraly, 2015, Electronic and mechanical properties of graphene–germanium interfaces grown by chemical vapor deposition, Nano Lett., 15, 7414, 10.1021/acs.nanolett.5b02833 Robinson, 2009, Raman topography and strain uniformity of large-area epitaxial graphene, Nano Lett., 9, 964, 10.1021/nl802852p Corro, 2015, Strain assessment in graphene through the Raman 2D' mode, J. Phys. Chem. C, 119, 25651, 10.1021/acs.jpcc.5b09643 Horcas, 2007, WSXM: a Software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 013705, 10.1063/1.2432410 Gao, 2011, Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition, ACS Nano, 5, 9194, 10.1021/nn203440r Zhan, 2017, Centimeter-scale nearly single-crystal monolayer MoS2 via self-limiting vapor deposition epitaxy, J. Phys. Chem. C, 121, 4703, 10.1021/acs.jpcc.6b12785 Zhou, 2016, Periodic modulation of the doping level in striped MoS2 superstructures, ACS Nano, 10, 3461, 10.1021/acsnano.5b07545 Zhang, 2014, Three-dimensional spirals of atomic layered MoS2, Nano Lett., 14, 6418, 10.1021/nl502961e