Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva

Petrology - Tập 25 - Trang 87-113 - 2017
I. V. Karmysheva1,2, V. G. Vladimirov1,2, A. G. Vladimirov1,2,3
1Novosibirsk State University, Novosibirsk, Russia
2Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Tomsk State University, Tomsk, Russia

Tóm tắt

The problems of tectonic control of composition, size, and morphology of synkinematic crustal granitoids are discussed by the example of the Western Sangilen granites (South-East Tuva). Comparative analysis was performed for felsic bodies and massifs spatially confined to tectonic zone (Erzin shear zone): Erzin migmatite–granite complex (510–490 Ma), Matut granitoid massif (510–490 Ma), Bayankol polyphase gabbro-monzodiorite–granodiorite–granite massif (490–480 Ma), and the Nizhneulor Massif (480–470 Ma). It is shown that synkinematic felsic melts during the transition from collisional compression to transpression were formed at different crustal levels. An increase of shear component provided favorable conditions for the migration of felsic melts, increase of size and morphology of intrusive bodies from vein type to harploith (likely, loppoliths and laccoliths) and further to stocks. All kinematic granitoids of the Erzin tectonic zone are ascribed to the crustal S-type granites. Dispersion and average chemical composition of the synkinematic granites strongly depend on the degree of their “isolation” from protolith. From auto- and paraautochthonous granitoids to allochthonous granites, the compositional dispersion decreases and the chemical composition is displaced toward I-type magmatic rocks.

Tài liệu tham khảo

Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya. Izdanie tret’e, ispravlennoe i dopolnennoe (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks. 3rd Ed.), St. Petersburg: Izd-vo VSEGEI, 2009, p. 200. Barbarin, B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 1999, vol. 46, pp. 605–626. Benn, K., Cruden, A.R., and Sawyer, E.W., Extraction, transport and emplacement of granitic magmas, J. Struct. Geol., 1998, vol. 20, nos. 9/10. Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, no. 126, pp. 1–24. Boynton, W.V., Cosmochemistry of the rare earth elements: meteorite studies, Rare Earth Element Geochemistry, Henderson, P., Ed., Amsterdam: Elsevier, 1984, pp. 63–114. Brown, M. and Solar, G.S., Shear-zone systems and melts: feedback relations and self-organization in orogenic belts, J. Struct. Geol., 1998, vol. 20, nos. 2–3, pp. 211–227. Clemens, J.C., Observations on the origins and ascent mechanisms of granitic magmas, J. Geol. Soc. London, 1998, vol. 155, pp. 843–851. Collin, W.J. and Sawyer, E.W., Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation, J. Metamorph. Geol., 1996, vol. 14, pp. 565–579. D’Lemos, R.S., Brown, M., and Strachan, R.A., Granite magma generation, ascent and emplacement within a transpressional orogeny, J. Geol. Soc., 1992, vol. 149, pp. 487–490. Fedorovsky, V.S., Vladimirov, A.G., Khain, E.V., et al., Tectonics, metamorphism, and magmatism of the collisional zones of Caledonides, Geotektonika, 1995, no. 3, pp. 3–22. Gibsher, A.S., Vladimirov, A.G., and Vladimirov, V.G., Geodynamics of the Early Paleozoic thrust-and-fold structure of the Sangilen, Southeastern Tuva, Dokl. Earth Sci, 2000, vol. 370, no. 4, pp. 50–53. Hutton, D.H.W. and Reavy, R.J., Strike-slip tectonics and granite petrogenesis, Tectonics, 1992, vol. 11, pp. 960–967. Hutton, D.H.W., Dempster, T.J., Brown, P.E., and Becker, S.D., A new mechanism of granite emplacement: intrusion in active extensional shear zones, Nature, 1990, vol. 343, pp. 452–455. Izokh, A.E., Kargopolov, S.A., Shelepaev, R.A., et al., Basite magmatism of the Cambrian–Ordovician stage of the Altai–Sayan fold area and relation with high temperature low-pressure metamorphism, in Aktual’nye voprosy geologii i mineragenii yuga Sibiri. Materialy nauch.-prakt. konf., (Actual Problems of Geology and Metallogeny of Southern Siberia. Proceedings of Scientific-Practical Conference), Novosibirsk, 2001, pp. 68–72. Johannesa, W., Ehlersb, C., Kriegsmanc, L.M., and Mengel, K., The link between migmatites and S-type granites in the Turku area, southern Finland, Lithos, 2003, vol. 68, nos. 3–4, pp. 69–90. Kalsbeek, F., Jepsen, H.F., and Nutman, A.P., From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen, Lithos, 2001, vol. 57, no. 1, pp. 1–21. Kargopolov, S.A., Low-depth granulites of Western Sangilen (Southeastern Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 1997. Karmysheva, I.V., Synkinematic granites and collisional–shear deformations of Western Sangilen (SE Tuva):, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 2012. Karmysheva, I.V., Vladimirov, V.G., Volkova, N.I., et al., Two Types of High-Grade Metamorphism in West Sangilen (Southeast Tuva), Dokl. Earth Sc., 2011, vol. 441, no. 1, pp. 1546–1551. Khain, E.V., Gibsher, A.S., Didenko, A.N., et al., Stages in the evolution of the continental margins of the Paleoasian Ocean in the Late Riphean and Early Paleozoic, in Tektonika yuga Vostochnogo Sayana i ego polozhenie v Uralo-Mongol’skom poyase (Tectonics of the Southern East Sayan and Its Position in the Ural–Mongolia Belt), Moscow: Nauchnyi mir, 2002, pp. 132–158. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., et al., Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence, J. Asian Earth Sci., 2004, vol. 23, no. 5, pp. 605–627. Kozakov, I.K., Kotov, A.B., Sal’nikova, E.B., et al., Metamorphic age of crystalline complexes of the Tuva–Mongolia Massif: the U–Pb geochronology of granitoids, Petrology, 1999, vol. 7, no. 2, pp. 177–191. Kozakov, I.K., Kotov, A.B., Sal’nikova, E.B., et al., Timing of the structural evolution of metamorphic rocks in the Tuva–Mongolian Massif, Geotectonics, 2001, vol. 35, no. 3, pp. 165–184. Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., Crust-forming processes in the geologic development of the Tuva–Mongolia Massif: Sm-Nd isotopic and geochemical data for granitoids, Petrology, 2003, vol. 11, no. 5, pp. 444–463. Kuz’michev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolia Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: PROBEL-2000, 2004. Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (similar to 800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): island arc-continent collision at the northeast Rodinia margin, Precambrian Res., 2001, vol. 110, nos. 1–4, pp. 109–126. Le Maitre, R.W., Bateman, P., Dudek, A., et al., A Classification of Igneous Rocks and a Glossary of Terms, Oxford: Blackwell Scientific Publications, 1989. Lepezin, G.G., Metamorficheskie kompleksy Altae-Sayanskoi skladchatoi oblasti, Tr. IGiG SO AN SSSR (Metamorphic Complexes of the Altai–Sayan Fold Area. Proc. Inst. Geol. Geokhim. Sib. Otd. Ross. Akad. Nauk), Novosibirsk: Nauka SO, 1978, vol. 398. Lister, G.S. and Snoke, A.W., S-C mylonites, J. Struct. Geol., 1980, vol. 2, no. 3, pp. 335–370. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643. Moyen, J.-F., Nedelec, A., Martin, H., and Jayananda, M., Syntectonic granite emplacement at different structural levels: the Closepet Granite, South India, J. Struct. Geol., 2003, vol. 25, pp. 611–631. Passchier, C.W. and Trouw, R.A.J., Microtectonics, Berlin Heidelberg: Springer-Verlag, 1996. Petrova, A.Yu., Rb-Sr isotope system of metamorphic and magmatic rocks of Western Sangilen (Southeast Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Moscow: IMGRE, 2001. Rosen, O.M. and Fedorovsky, V.S., Kollizionnye granitoidy i rassloenie zemnoi kory (primery kainozoiskii, paleozoiskikh i proterozoiskikh kollizionnykh sistem) (Collisional Granitoids and the Earth Crust Layering), Moscow: Nauchnyi mir, 2001. Rudnick, R.L., Making continental crust, Nature, 1995, vol. 378, pp. 571–578. Salnikova, E.B., Kozakov, I.K., Kotov, A.B., et al., Age of Palaeozoic granites and metamorphism in the Tuvino–Mongolian massif of the Central Asian mobile belt: loss of a Precambrian microcontinent, Precambrian Res., 2001, vol. 110, pp. 143–164. Shelepaev, R.A., Evolution of the basite magmatism of Western Zangilen (Southeastern Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 2006. Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., et al., Interpretatsiya geokhimicheskikh dannykh, Ucheb. Posobie (Interpretation of Geochemical Data. A Textbook), Moscow: Intermet Inzhiniring, 2001. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Evolution and Composition, London: Blackwell, 1985. Ushakova, E.N., Biotity magmaticheskikh porod (Biotites of Magmatic Rocks), Novosibirsk: Nauka SO, 1980. Van der Pluijm Ben, A. and Marshak, S., Earth Structure: an Introduction to Structural Geology and Tectonics, 2nd Ed., New-York–London: W.W. Norton & Company, 2004. Vanderhaeghe, O., Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation, Tectonophysics, 1999, vol. 312, pp. 35–55. Vanderhaeghe, O. and Teyssier, C., Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: role of ductile thinning and partial melting of the mid- to lower crust, Geodynamics Acta, 1997, vol. 10, pp. 41–58. Vigneresse, J.-L., Control of granite emplacement by regional deformation, Tectonophysics, 1995, vol. 249, pp. 173–186. Vladimirov, V.G. and Karmysheva, I.V., Structural and compositional changes at the contact with a zone of hightemperature blastomylonitization; a case study of the Erzin shear zone, Western Sangilen, Southeastern Tuva), in Tektonika skladchatykh poyasov Evrazii: skhodstvo, razlichie, kharakternye cherty noveishego goroobrazovaniya, regional’nye obobshcheniya: Materialy XLVI Tektonicheskogo soveshchaniya (Tectonics of Fold Belts of Eurasia: Similarity, Difference, Characteristic Features of the Youngest Orogenesis, Regional Generaization. Proceedings of 46th Tectonic Conference), Moscow, 2014, vol. 1, pp. 52–54. Vladimirov, V.G. and Lepezin, G.G., Structural changes in the metamorphic framing of the Ulor granitoid massif (Southwestern Sangilen), Geol. Geofiz., 1996, vol. 37, no. 6, pp. 113–116. Vladimirov, V.G., Vladimirov, A.G., Gibsher, A.S., et al., Model of the tectonometamorphic evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a reflection of the Early Caledonian accretion–collision tectogenesis, Dokl. Earth Sci., 2005, vol. 405, no. 8, pp. 1159–1165. Wickham, S.M., The segregation and emplacement of granitic magmas, J. Geol. Soc. London, 1987, vol. 144, pp. 281–297.