Synergy of activating substrate and introducing C-H···O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes

Science in China Series B: Chemistry - Tập 63 - Trang 1230-1239 - 2020
Rui Wu1, Kai Chen2, Jun Ma1, Zhi-Xiang Yu3, Shifa Zhu1
1Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
2College of Chemistry and Chemical Engineering, Central South University, Changsha, China
3Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, China

Tóm tắt

We report the first Rh2(II)-catalyzed asymmetric cycloisomerization of activated enynes to provide cyclopropane-fused tetra-hydropyridines in good yields and excellent enantioselectivities under mild conditions. The activated group, CHZ (Z is electron-withdrawing group (EWG)), in the enyne substrates exerts two synergetic roles, one is to activate alkyne for the cyclopropanation reaction; the other is to introduce the C-H···O interaction between substrate and catalyst (reducing the energy barrier of the reaction). This double-mode activation was supported by both density functional theory (DFT) calculations and experimental tests. This strategy was also extended to other CH2Z (Z can be OH, OMe, F) as activating groups that made the CH2 more acidic so that the substrates could also form increased C-H···O interaction with the catalyst.

Tài liệu tham khảo

Kobayashi T, Suemasa A, Igawa A, Ide S, Fukuda H, Abe H, Arisawa M, Minami M, Shuto S. ACS Med Chem Lett, 2014, 5: 889–893 Berger G, Vilchis-Reyes M, Hanessian S. Angew Chem Int Ed, 2015, 54: 13268–13272 Talele TT. J Med Chem, 2016, 59: 8712–8756 Maslovskaya LA, Savchenko AI, Pierce CJ, Boyle GM, Gordon VA, Reddell PW, Parsons PG, Williams CM. Chem Eur J, 2019, 25: 1525–1534 Zhang L, Sun J, Kozmin S. Adv Synth Catal, 2006, 348: 2271–2296 Fehr C, Galindo J. Angew Chem Int Ed, 2006, 45: 2901–2904 Fürstner A. Acc Chem Res, 2014, 47: 925–938 Masutomi K, Noguchi K, Tanaka K. J Am Chem Soc, 2014, 136: 7627–7630 Dieckmann M, Jang YS, Cramer N. Angew Chem Int Ed, 2015, 54: 12149–12152 Gold-catalyzed the synthesis of chiral cyclopropane-annulated bicyclic systems from enynes: (a) Hashmi ASK. Chem Rev, 2007, 107: 3180–3211 Jimenez-Nunez E, Echavarren AM. Chem Rev, 2008, 108: 3326–3350 Chao CM, Beltrami D, Toullec PY, Michelet V. Chem Commun, 2009, 6988 Pradal A, Chao CM, Toullec PY, Michelet V. Beilstein J Org Chem, 2011, 7: 1021–1029 Teller H, Fürstner A. Chem Eur J, 2011, 17: 7764–7767 Deschamps NM, Elitzin VI, Liu B, Mitchell MB, Sharp MJ, Tabet EA. J Org Chem, 2011, 76: 712–715 Teller H, Corbet M, Mantilli L, Gopakumar G, Goddard R, Thiel W, Fürstner A. J Am Chem Soc, 2012, 134: 15331–15342 Guitet M, Zhang P, Marcelo F, Tugny C, Jiménez-Barbero J, Buriez O, Amatore C, Mouriès-Mansuy V, Goddard JP, Fensterbank L, Zhang Y, Roland S, Ménand M, Sollogoub M. Angew Chem Int Ed, 2013, 52: 7213–7218 Obradors C, Echavarren AM. Chem Commun, 2014, 50: 16–28 Obradors C, Echavarren AM. Acc Chem Res, 2014, 47: 902–912 Yavari K, Aillard P, Zhang Y, Nuter F, Retailleau P, Voituriez A, Marinetti A. Angew Chem Int Ed, 2014, 53: 861–865 Aillard P, Voituriez A, Dova D, Cauteruccio S, Licandro E, Marinetti A. Chem Eur J, 2014, 20: 12373–12376 Barreiro EM, Boltukhina EV, White AJP, Hii KKM. Chem Eur J, 2015, 21: 2686–2690 Vanitcha A, Damelincourt C, Gontard G, Vanthuyne N, Mouriès-Mansuy V, Fensterbank L. Chem Commun, 2016, 52: 6785–6788 Wu Z, Isaac K, Retailleau P, Betzer JF, Voituriez A, Marinetti A. Chem Eur J, 2016, 22: 3278–3281 Zhang PC, Wang Y, Zhang ZM, Zhang J. Org Lett, 2018, 20: 7049–7052 Zuccarello G, Mayans JG, Escofet I, Scharnagel D, Kirillova MS, Pérez-Jimeno AH, Calleja P, Boothe JR, Echavarren AM. J Am Chem Soc, 2019, 141: 11858–11863 Platinum-catalyzed the synthesis of chiral cyclopropane-annulated bicyclic systems from enynes: (a) Brissy D, Skander M, Retailleau P, Marinetti A. Organometallics, 2007, 26: 5782–5785 Brissy D, Skander M, Jullien H, Retailleau P, Marinetti A. Org Lett, 2009, 11: 2137–2139 Brissy D, Skander M, Retailleau P, Frison G, Marinetti A. Organometallics, 2009, 28: 140–151 Xia JB, Liu WB, Wang TM, You SL. Chem-A Eur J, 2010, 16: 6442–6446 Jullien H, Brissy D, Sylvain R, Retailleau P, Naubron JV, Gladiali S, Marinetti A. Adv Synth Catal, 2011, 353: 1109–1124 Timmons DJ, Doyle MP. Chiral Dirhodium(II) Catalysts and Their Applications. In: Cotton FA, Murillo CA, Walton RA, Eds. Multiple Bonds Between Metal Atoms. 3rd ed. New York: Springer, 2005. 591–626 Doyle MP, Forbes DC. Chem Rev, 1998, 98: 911–936 Lebel H, Marcoux JF, Molinaro C, Charette AB. Chem Rev, 2003, 103: 977–1050 Davies HML, Lian Y. Acc Chem Res, 2012, 45: 923–935 Cheng QQ, Deng Y, Lankelma M, Doyle MP. Chem Soc Rev, 2017, 46: 5425–5443 Davies HML. J Org Chem, 2019, 84: 12722–12745 Davies HML, Liao K. Nat Rev Chem, 2019, 3: 347–360 Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem Soc Rev, 2020, 49: 908–950 Chatani N, Kataoka K, Murai S, Furukawa N, Seki Y. J Am Chem Soc, 1998, 120: 9104–9105 Ota K, Lee SI, Tang JM, Takachi M, Nakai H, Morimoto T, Sakurai H, Kataoka K, Chatani N. J Am Chem Soc, 2009, 131: 15203–15211 Davies HML, Beckwith REJ. Chem Rev, 2003, 103: 2861–2904 Alabugin IV, Gold B. J Org Chem, 2013, 78: 7777–7784 Schreiner PR. Chem Soc Rev, 2003, 32: 289–296 Doyle AG, Jacobsen EN. Chem Rev, 2007, 107: 5713–5743 Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153 Bulfield D, Huber SM. Chem Eur J, 2016, 22: 14434–14450 Breugst M, von der Heiden D, Schmauck J. Synthesis, 2017, 49: 3224–3236 Fraile JM, García JI, Herrerías CI, Mayoral JA, Reiser O, Socuéllamos A, Werner H. Chem Eur J, 2004, 10: 2997–3005 Michrowska A, Mennecke K, Kunz U, Kirschning A, Grela K. J Am Chem Soc, 2006, 128: 13261–13267 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Mont-gomery Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D. Wallingford: Gaussian, Inc., 2009 Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789 Becke AD. J Chem Phys, 1993, 98: 5648–5652 Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 299–310 Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. Chem Phys Lett, 1993, 208: 111–114 Hehre WJ, Radom L, Schleyer PVR, Pople JA. Ab Initio Molecular Orbital Theory. New York: Wiley, 1986 Zhao Y, Truhlar DG. Theor Chem Account, 2008, 120: 215–241 Andrae D, Häuβermann U, Dolg M, Stoll H, Preuβ H. Theoret Chim Acta, 1990, 77: 123–141 Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396 Lu T, Chen F. J Comput Chem, 2012, 33: 580–592 Legault C. 1.0b edition. Universite de Sherbrooke: 2009. http://www.cylview.org Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38 Zhang Z, Wang J. Tetrahedron, 2008, 64: 6577–6605 Davies HML, Manning JR. Nature, 2008, 451: 417–424 Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J Am Chem Soc, 2009, 131: 18034–18035 Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem Rev, 2010, 110: 704–724 Davies HML, Morton D. Chem Soc Rev, 2011, 40: 1857–1869 Xu B, Zhu SF, Xie XL, Shen JJ, Zhou QL. Angew Chem Int Ed, 2011, 50: 11483–11486 Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew Chem Int Ed, 2016, 55: 8452–8456 Yang JM, Li ZQ, Li ML, He Q, Zhu SF, Zhou QL. J Am Chem Soc, 2017, 139: 3784–3789 Zhu D, Chen L, Zhang H, Ma Z, Jiang H, Zhu S. Angew Chem Int Ed, 2018, 57: 12405–12409 The D2-symmetric dirhodium catalysts derived from a 1,2,2-triarylcyclopropanecarboxylate ligands were developed by the Davies group: (a) Qin C, Boyarskikh V, Hansen JH, Hardcastle KI, Musaev DG, Davies HML. J Am Chem Soc, 2011, 133: 19198–19204 Qin C, Davies HML. Org Lett, 2013, 15: 6152–6154 Qin C, Davies HML. J Am Chem Soc, 2013, 135: 14516–14519 Guzmán PE, Lian Y, Davies HML. Angew Chem Int Ed, 2014, 53: 13083–13087 Guptill DM, Davies HML. J Am Chem Soc, 2014, 136: 17718–17721 Qin C, Davies HML. J Am Chem Soc, 2014, 136: 9792–9796 He J, Hamann LG, Davies HML, Beckwith REJ. Nat Commun, 2015, 6: 5943–5952 Fu L, Guptill DM, Davies HML. J Am Chem Soc, 2016, 138: 5761–5764 Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML. Nature, 2016, 533: 230–234 Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HML. Nature, 2017, 551: 609–613 Liao K, Yang YF, Li Y, Sanders JN, Houk KN, Musaev DG, Davies HML. Nat Chem, 2018, 10: 1048–1055 Doyle MP. J Org Chem, 2006, 71: 9253–9260 Doyle MP, Van Oeveren A, Westrum LJ, Protopopova MN, Clayton TW. J Am Chem Soc, 1991, 113: 8982–8984 Wang Y, Wolf J, Zavalij P, Doyle M. Angew Chem Int Ed, 2008, 47: 1439–1442 Xu X, Wang X, Liu Y, Doyle MP. J Org Chem, 2014, 79: 12185–12190 See the Supporting Information for more details about screening of reaction conditions Yamaguchi K, Kazuta Y, Abe H, Matsuda A, Shuto S. J Org Chem, 2003, 68: 9255–9262 Melancon BJ, Perl NR, Taylor RE. Org Lett, 2007, 9: 1425–1428 Hohn E, Palecek J, Pietruszka J, Frey W. Eur J Org Chem, 2009, 2009: 3765–3782 Osler JD, Unsworth WP, Taylor RJK. Org Biomol Chem, 2013, 11: 7587–7594 Corey EJ, Fuchs PL. Tetrahedron Lett, 1972, 13: 3769–3772 Baldwin JE. Chem Rev, 2003, 103: 1197–1212 Ylijoki KEO, Stryker JM. Chem Rev, 2013, 113: 2244–2266 Jiao L, Yu ZX. J Org Chem, 2013, 78: 6842–6848 Wang LN, Cui Q, Yu ZX. J Org Chem, 2016, 81: 10165–10171 Zhuang Z, Li CL, Xiang Y, Wang YH, Yu ZX. Chem Commun, 2017, 53: 2158–2161 Fumagalli G, Stanton S, Bower JF. Chem Rev, 2017, 117: 9404–9432 Li CL, Yu ZX. J Org Chem, 2019, 84: 9913–9928 Sunderhaus JD, Dockendorff C, Martin SF. Tetrahedron, 2009, 65: 6454–6469 Corey EJ, Lee TW. Chem Commun, 2001, 1321–1329 Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F. NBO 6.0. Madison: Theoretical Chemistry Institute, University of Wisconsin, 2013, http://nbo6.chem.wisc.edu/ Zhuo LG, Liao W, Yu ZX. Asian J Org Chem, 2012, 1: 336–345 Dong Z, Liu CH, Wang Y, Lin M, Yu ZX. Angew Chem Int Ed, 2013, 52: 14157–14161 Moore KB III, Sadeghian K, Sherrill CD, Ochsenfeld C, Schaefer HF III. J Chem Theor Comput, 2017, 13: 5379–5395 Gu Y, Kar T, Scheiner S. J Am Chem Soc, 1999, 121: 9411–9422 Zhang Q, Du L. Comput Theor Chem, 2016, 1078: 123–128 Simon S, Duran M, Dannenberg JJ. J Chem Phys, 1996, 105: 11024–11031