Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries

iScience - Tập 19 - Trang 316-325 - 2019
Yu Liu1, Dezhi Yang1, Wenqi Yan1, Qinghong Huang1, Yusong Zhu1, Lijun Fu2,1, Yuping Wu2,1
1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Energy Science and Engineering and Institute of Advanced Materials, Nanjing Tech University, No.30, Puzhu Road (S), Nanjing, Jiangsu 211800, China
2School of Physics and Telecommunication Engineering, South China Normal University, No. 55, West Zhongshan Road, Tianhe District, Guangzhou, Guangdong 510631, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agnihotry, 2000, Li+ conducting gel electrolyte for electrochromic windows, Solid State Ion., 136, 573, 10.1016/S0167-2738(00)00339-8

Bruce, 2012, Li–O2 and Li–S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191

Burkhardt, 2011, Towards organic energy storage: characterization of 2,5-bis(methylthio)thieno[3,2-b]thiophene, J. Mater. Chem., 21, 9553, 10.1039/c1jm10664c

Busche, 2014, Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates, J. Power Sources, 259, 289, 10.1016/j.jpowsour.2014.02.075

Cha, 2018, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat. Nanotechnol., 13, 337, 10.1038/s41565-018-0061-y

Chen, 2017, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries, J. Am. Chem. Soc., 139, 12710, 10.1021/jacs.7b06973

Cheng, 2018, Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density, Adv. Energy Mater., 8, 1702337, 10.1002/aenm.201702337

Doan, 2013, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, J. Power Sources, 241, 61, 10.1016/j.jpowsour.2013.04.113

Dong, 2018, Advances in cathode materials for high-performance lithium-sulfur batteries, iScience, 6, 151, 10.1016/j.isci.2018.07.021

Elazari, 2011, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 23, 5641, 10.1002/adma.201103274

Fanous, 2011, Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries, Chem. Mater., 23, 5024, 10.1021/cm202467u

Frey, 2017, Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure, ACS Energy Lett., 2, 595, 10.1021/acsenergylett.7b00009

Gao, 2011, Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, J. Phys. Chem. C, 115, 25132, 10.1021/jp207714c

Gao, 2019, Toward a remarkable Li-S battery via 3D printing, Nano Energy, 56, 595, 10.1016/j.nanoen.2018.12.001

Ghazi, 2017, MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries, Adv. Mater., 29, 1606817, 10.1002/adma.201606817

Han, 2013, Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth, Nano Energy, 2, 1197, 10.1016/j.nanoen.2013.05.003

Huang, 2013, Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60°C, Nano Energy, 2, 314, 10.1016/j.nanoen.2012.10.003

Hwa, 2017, Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells, Nano Lett., 17, 7086, 10.1021/acs.nanolett.7b03831

Hwang, 2013, One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature, Nano Lett., 13, 4532, 10.1021/nl402513x

Jayaprakash, 2011, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 50, 5904, 10.1002/anie.201100637

Kong, 2018, A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries, Adv. Mater., 30, 1705219, 10.1002/adma.201705219

Li, 2015, Acacia Senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries, Adv. Energy Mater., 5, 1500878, 10.1002/aenm.201500878

Li, 2016, Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating, Nano Lett., 16, 3545, 10.1021/acs.nanolett.6b00577

Li, 2017, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries, Joule, 1, 576, 10.1016/j.joule.2017.06.003

Li, 2017, A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries, ACS Nano, 11, 11417, 10.1021/acsnano.7b06061

Li, 2018, Revisiting the role of polysulfides in lithium-sulfur batteries, Adv. Mater., 30, e1705590, 10.1002/adma.201705590

Li, 2018, 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries, Adv. Energy Mater., 8, 1702381, 10.1002/aenm.201702381

Li, 2018, A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation, Nat. Commun., 9, 4509, 10.1038/s41467-018-06877-9

Li, 2018, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances, Sci. Adv., 4, eaat1687, 10.1126/sciadv.aat1687

Liu, 2018, Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries, Chem. Commun.(Camb.), 54, 2288, 10.1039/C7CC09913D

MacDiarmid, 2001, Synthetische Metalle: eine neue Rolle für organische polymere, Angew. Chem. Int. Ed., 113, 2649, 10.1002/1521-3757(20010716)113:14<2649::AID-ANGE2649>3.0.CO;2-W

Otero, 1999, Conducting polymers as positive electrodes in rechargeable lithium-ion batteries, J. Power Sources, 81, 838, 10.1016/S0378-7753(98)00236-5

Seh, 2016, Designing high-energy lithium-sulfur batteries, Chem. Soc. Rev., 45, 5605, 10.1039/C5CS00410A

Service, 2018, Lithium-sulfur batteries poised for leap, Science, 359, 1080, 10.1126/science.359.6380.1080

Song, 2015, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes, Angew. Chem. Int. Ed., 54, 4399, 10.1002/ange.201411109

Sun, 2016, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries, Adv. Mater., 28, 9797, 10.1002/adma.201602172

Umeshbabu, 2019, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes, Electrochem. Energy Rev., 2, 199, 10.1007/s41918-019-00029-3

Vondrák, 2001, Gel polymer electrolytes based on PMMA, Electrochim. Acta, 46, 2047, 10.1016/S0013-4686(01)00413-3

Wang, 2002, A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

Wang, 2003, Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284

Wang, 2018, Facile stabilization of sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate, Angew. Chem. Int. Ed., 57, 7734, 10.1002/anie.201801818

Wang, 2018, Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries, ACS Energy Lett., 3, 2899, 10.1021/acsenergylett.8b01945

Wei, 2015, Metal-sulfur battery cathodes based on PAN-sulfur composites, J. Am. Chem. Soc., 137, 12143, 10.1021/jacs.5b08113

Xin, 2012, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 134, 18510, 10.1021/ja308170k

Yang, 2016, Phase inversion: a universal method to create high-performance porous electrodes for nanoparticle-based energy storage devices, Adv. Funct. Mater., 26, 8427, 10.1002/adfm.201604229

Yang, 2017, Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices, Nano Energy, 39, 418, 10.1016/j.nanoen.2017.07.028

Yang, 2018, Structural design of lithium–sulfur batteries: from fundamental research to practical application, Electrochem. Energy Rev., 1, 239, 10.1007/s41918-018-0010-3

Yang, 2018, Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries, J. Mater. Chem. A, 6, 22958, 10.1039/C8TA08188C

Yu, 2004, Lithium storage in conductive sulfur-containing polymers, J. Electroanal. Chem. (Lausanne), 573, 121

Zhong, 2018, Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries, J. Am. Chem. Soc., 140, 1455, 10.1021/jacs.7b11434

Zhou, 2013, Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries, J. Am. Chem. Soc., 135, 16736, 10.1021/ja409508q

Zhou, 2015, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nat. Commun., 6, 7760, 10.1038/ncomms8760

Zhou, 2017, Selenium-DOPED cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency, Adv. Mater., 29, 1701294, 10.1002/adma.201701294