Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agnihotry, 2000, Li+ conducting gel electrolyte for electrochromic windows, Solid State Ion., 136, 573, 10.1016/S0167-2738(00)00339-8
Bruce, 2012, Li–O2 and Li–S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191
Burkhardt, 2011, Towards organic energy storage: characterization of 2,5-bis(methylthio)thieno[3,2-b]thiophene, J. Mater. Chem., 21, 9553, 10.1039/c1jm10664c
Busche, 2014, Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates, J. Power Sources, 259, 289, 10.1016/j.jpowsour.2014.02.075
Cha, 2018, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries, Nat. Nanotechnol., 13, 337, 10.1038/s41565-018-0061-y
Chen, 2017, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries, J. Am. Chem. Soc., 139, 12710, 10.1021/jacs.7b06973
Cheng, 2018, Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density, Adv. Energy Mater., 8, 1702337, 10.1002/aenm.201702337
Doan, 2013, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, J. Power Sources, 241, 61, 10.1016/j.jpowsour.2013.04.113
Dong, 2018, Advances in cathode materials for high-performance lithium-sulfur batteries, iScience, 6, 151, 10.1016/j.isci.2018.07.021
Elazari, 2011, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 23, 5641, 10.1002/adma.201103274
Fanous, 2011, Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries, Chem. Mater., 23, 5024, 10.1021/cm202467u
Frey, 2017, Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure, ACS Energy Lett., 2, 595, 10.1021/acsenergylett.7b00009
Gao, 2011, Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, J. Phys. Chem. C, 115, 25132, 10.1021/jp207714c
Gao, 2019, Toward a remarkable Li-S battery via 3D printing, Nano Energy, 56, 595, 10.1016/j.nanoen.2018.12.001
Ghazi, 2017, MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries, Adv. Mater., 29, 1606817, 10.1002/adma.201606817
Han, 2013, Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth, Nano Energy, 2, 1197, 10.1016/j.nanoen.2013.05.003
Huang, 2013, Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60°C, Nano Energy, 2, 314, 10.1016/j.nanoen.2012.10.003
Hwa, 2017, Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells, Nano Lett., 17, 7086, 10.1021/acs.nanolett.7b03831
Hwang, 2013, One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature, Nano Lett., 13, 4532, 10.1021/nl402513x
Jayaprakash, 2011, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 50, 5904, 10.1002/anie.201100637
Kong, 2018, A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries, Adv. Mater., 30, 1705219, 10.1002/adma.201705219
Li, 2015, Acacia Senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries, Adv. Energy Mater., 5, 1500878, 10.1002/aenm.201500878
Li, 2016, Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating, Nano Lett., 16, 3545, 10.1021/acs.nanolett.6b00577
Li, 2017, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries, Joule, 1, 576, 10.1016/j.joule.2017.06.003
Li, 2017, A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries, ACS Nano, 11, 11417, 10.1021/acsnano.7b06061
Li, 2018, Revisiting the role of polysulfides in lithium-sulfur batteries, Adv. Mater., 30, e1705590, 10.1002/adma.201705590
Li, 2018, 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries, Adv. Energy Mater., 8, 1702381, 10.1002/aenm.201702381
Li, 2018, A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation, Nat. Commun., 9, 4509, 10.1038/s41467-018-06877-9
Li, 2018, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances, Sci. Adv., 4, eaat1687, 10.1126/sciadv.aat1687
Liu, 2018, Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries, Chem. Commun.(Camb.), 54, 2288, 10.1039/C7CC09913D
MacDiarmid, 2001, Synthetische Metalle: eine neue Rolle für organische polymere, Angew. Chem. Int. Ed., 113, 2649, 10.1002/1521-3757(20010716)113:14<2649::AID-ANGE2649>3.0.CO;2-W
Otero, 1999, Conducting polymers as positive electrodes in rechargeable lithium-ion batteries, J. Power Sources, 81, 838, 10.1016/S0378-7753(98)00236-5
Seh, 2016, Designing high-energy lithium-sulfur batteries, Chem. Soc. Rev., 45, 5605, 10.1039/C5CS00410A
Service, 2018, Lithium-sulfur batteries poised for leap, Science, 359, 1080, 10.1126/science.359.6380.1080
Song, 2015, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes, Angew. Chem. Int. Ed., 54, 4399, 10.1002/ange.201411109
Sun, 2016, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries, Adv. Mater., 28, 9797, 10.1002/adma.201602172
Umeshbabu, 2019, Recent progress in all-solid-state Lithium−Sulfur batteries using high Li-ion conductive solid electrolytes, Electrochem. Energy Rev., 2, 199, 10.1007/s41918-019-00029-3
Vondrák, 2001, Gel polymer electrolytes based on PMMA, Electrochim. Acta, 46, 2047, 10.1016/S0013-4686(01)00413-3
Wang, 2002, A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Wang, 2003, Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284
Wang, 2018, Facile stabilization of sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate, Angew. Chem. Int. Ed., 57, 7734, 10.1002/anie.201801818
Wang, 2018, Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries, ACS Energy Lett., 3, 2899, 10.1021/acsenergylett.8b01945
Wei, 2015, Metal-sulfur battery cathodes based on PAN-sulfur composites, J. Am. Chem. Soc., 137, 12143, 10.1021/jacs.5b08113
Xin, 2012, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 134, 18510, 10.1021/ja308170k
Yang, 2016, Phase inversion: a universal method to create high-performance porous electrodes for nanoparticle-based energy storage devices, Adv. Funct. Mater., 26, 8427, 10.1002/adfm.201604229
Yang, 2017, Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices, Nano Energy, 39, 418, 10.1016/j.nanoen.2017.07.028
Yang, 2018, Structural design of lithium–sulfur batteries: from fundamental research to practical application, Electrochem. Energy Rev., 1, 239, 10.1007/s41918-018-0010-3
Yang, 2018, Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries, J. Mater. Chem. A, 6, 22958, 10.1039/C8TA08188C
Yu, 2004, Lithium storage in conductive sulfur-containing polymers, J. Electroanal. Chem. (Lausanne), 573, 121
Zhong, 2018, Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries, J. Am. Chem. Soc., 140, 1455, 10.1021/jacs.7b11434
Zhou, 2013, Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries, J. Am. Chem. Soc., 135, 16736, 10.1021/ja409508q
Zhou, 2015, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nat. Commun., 6, 7760, 10.1038/ncomms8760