Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures

Toxicon - Tập 210 - Trang 49-57 - 2022
Xiang Wan1,2,3, Qingchun Guo1, Xiaojun Li1, Guoxiang Wang1,3, Yanyan Zhao2
1School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
2State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
3Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China

Tài liệu tham khảo

Aravind, 2005, Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism, Plant Physiol. Biochem., 43, 107, 10.1016/j.plaphy.2005.01.002 Blokhina, 2003, Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot., 91, 179, 10.1093/aob/mcf118 Carls, 2008, Fish embryos are damaged by dissolved PAHs, not oil particles, Aquat. Toxicol., 88, 121, 10.1016/j.aquatox.2008.03.014 Chaffin, 2018, Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production, Harmful Algae, 73, 84, 10.1016/j.hal.2018.02.001 Chesworth, 2004, The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.), Aquat. Toxicol., 66, 293, 10.1016/j.aquatox.2003.10.002 Cid, 1996, Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry, Cytometry, 25, 32, 10.1002/(SICI)1097-0320(19960901)25:1<32::AID-CYTO4>3.0.CO;2-G Feng, 2018, Physi-ecological responses of Microcystis aeruginosa to phenanthrene exposure, Resour. Environ. Yangtze Basin, 27, 2031 Franklin, 2001, Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry, Arch. Environ. Contam. Toxicol., 40, 469, 10.1007/s002440010199 Gan, 2012, The role of microcystins in maintaining colonies of bloom-forming Microcystis spp, Environ. Microbiol., 14, 730, 10.1111/j.1462-2920.2011.02624.x Gobler, 2020, Climate change and harmful algal blooms: insights and perspective, Harmful Algae, 91, 101731, 10.1016/j.hal.2019.101731 Ho, 2019, Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574, 667, 10.1038/s41586-019-1648-7 Hu, 2014, Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905, Ecotoxicol. Environ. Saf., 105, 121, 10.1016/j.ecoenv.2014.01.023 Huang, 2019, Cyanobacterial bioactive metabolites—a review of their chemistry and biology, Harmful Algae, 83, 42, 10.1016/j.hal.2018.11.008 Huang, 2019, Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values, Toxicon, 169, 103, 10.1016/j.toxicon.2019.09.004 Knauert, 2008, The role of reactive pxygen species in copper toxicity to two freshwater green algae, J. Phycol., 44, 311, 10.1111/j.1529-8817.2008.00471.x Lee, 2015, Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake, Ecotoxicol. Environ. Saf., 114, 318, 10.1016/j.ecoenv.2014.05.004 Liu, 2009, Sedimentary record of hydrophobic organic compounds in relation to regional economic development: a study of Taihu Lake, East China, Environ. Pollut., 157, 2994, 10.1016/j.envpol.2009.05.056 Liu, 2015, Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels, Ecotoxicol. Environ. Saf., 111, 138, 10.1016/j.ecoenv.2014.10.011 Liu, 2015, Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants, Microb. Ecol., 69, 535, 10.1007/s00248-014-0515-1 Loftin, 2016, Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007, Harmful Algae, 56, 77, 10.1016/j.hal.2016.04.001 Lu, 2014, Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress, Chemosphere, 117, 164, 10.1016/j.chemosphere.2014.06.040 Martin-Luna, 2006, Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster, Phytochemistry, 67, 876, 10.1016/j.phytochem.2006.02.005 Meng, 2019, A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China, Sci. Total Environ., 651, 2497, 10.1016/j.scitotenv.2018.10.162 Mojiri, 2019, Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments, Sci. Total Environ., 696, 133971, 10.1016/j.scitotenv.2019.133971 Mowe, 2015, Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species, Harmful Algae, 50, 88, 10.1016/j.hal.2015.10.011 2006 Peng, 2019, Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction, Ecotoxicol. Environ. Saf., 182, 109376, 10.1016/j.ecoenv.2019.109376 Piazza, 2016, Exposure to phenanthrene and depuration: changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops Nodipecten nodosus, Aquat. Toxicol., 177, 146, 10.1016/j.aquatox.2016.05.025 Qian, 2010, Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa, Aquat. Toxicol., 99, 405, 10.1016/j.aquatox.2010.05.018 Qin, 2013, Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators, Ecol. Indicat., 24, 599, 10.1016/j.ecolind.2012.08.019 Schatz, 2007, Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins, Environ. Microbiol., 9, 965, 10.1111/j.1462-2920.2006.01218.x Seoane, 2017, Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica, Chemosphere, 171, 339, 10.1016/j.chemosphere.2016.12.097 Serodio, 2021, Photoinhibition in optically thick samples: effects of light attenuation on chlorophyll fluorescence-based parameters, J. Theor. Biol., 513, 110580, 10.1016/j.jtbi.2021.110580 Song, 2017, Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa, ISME J., 11, 1865, 10.1038/ismej.2017.45 Su, 2019, The influence of nutrients limitation on phytoplankton growth and microcystins production in Spring Lake, USA, Chemosphere, 234, 34, 10.1016/j.chemosphere.2019.06.047 Tao, 2018, Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes, Water Res., 132, 1, 10.1016/j.watres.2017.12.053 Tillett, 2000, Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system, Chem. Biol., 7, 753, 10.1016/S1074-5521(00)00021-1 Wan, 2015, Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae, J. Hazard Mater., 283, 778, 10.1016/j.jhazmat.2014.10.026 Wan, 2021, Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna), Ecotoxicol. Environ. Saf., 220, 112405, 10.1016/j.ecoenv.2021.112405 Wan, 2020, Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China, Environ. Sci. Pollut. Res. Int., 27, 45095, 10.1007/s11356-020-10384-0 Wan, 2019, Combined toxic effects of microcystin-LR and phenanthrene on growth and antioxidant system of duckweed (Lemna gibba L.), Ecotoxicol. Environ. Saf., 185, 109668, 10.1016/j.ecoenv.2019.109668 Wang, 2016, Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905, Ecotoxicol. Environ. Saf., 132, 231, 10.1016/j.ecoenv.2016.06.010 Wang, 2008, Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum, Ecotoxicol. Environ. Saf., 71, 465, 10.1016/j.ecoenv.2007.12.019 Wang, 2017, Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae, Aquat. Toxicol., 186, 67, 10.1016/j.aquatox.2017.02.022 Wu, 2021, Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production, Sci. Total Environ., 761, 143265, 10.1016/j.scitotenv.2020.143265 Wu, 2007, Response of Microcystis to copper stress: do phenotypes of Microcystis make a difference in stress tolerance?, Environ. Pollut., 147, 324, 10.1016/j.envpol.2006.05.022 Yang, 2017, Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol. Environ. Saf., 142, 29, 10.1016/j.ecoenv.2017.03.037 Zhang, 2020, Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: cytotoxic endpoints, production and release of microcystin-LR, J. Hazard Mater., 399, 123021, 10.1016/j.jhazmat.2020.123021 Zhang, 2018, PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa, Ecotoxicol. Environ. Saf., 157, 134, 10.1016/j.ecoenv.2018.03.052 Zhang, 2017, Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations, Sci. Total Environ., 575, 513, 10.1016/j.scitotenv.2016.09.011 Zhang, 2021, The latest advances in the reproductive toxicity of microcystin-LR, Environ. Res., 192, 110254, 10.1016/j.envres.2020.110254 Zhao, 2016, First identification of the toxicity of microcystins on pancreatic islet function in humans and the involved potential biomarkers, Environ. Sci. Technol., 50, 3137, 10.1021/acs.est.5b03369 Zhou, 2021, Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa, J. Hazard Mater., 420, 126591, 10.1016/j.jhazmat.2021.126591 Zhu, 2012, Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa, J. Hazard Mater., 237–238, 371, 10.1016/j.jhazmat.2012.08.029 Zilliges, 2011, The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions, PLoS One, 6, 10.1371/journal.pone.0017615