Synergistic toxicity to the toxigenic Microcystis and enhanced microcystin release exposed to polycyclic aromatic hydrocarbon mixtures
Tài liệu tham khảo
Aravind, 2005, Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism, Plant Physiol. Biochem., 43, 107, 10.1016/j.plaphy.2005.01.002
Blokhina, 2003, Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot., 91, 179, 10.1093/aob/mcf118
Carls, 2008, Fish embryos are damaged by dissolved PAHs, not oil particles, Aquat. Toxicol., 88, 121, 10.1016/j.aquatox.2008.03.014
Chaffin, 2018, Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production, Harmful Algae, 73, 84, 10.1016/j.hal.2018.02.001
Chesworth, 2004, The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.), Aquat. Toxicol., 66, 293, 10.1016/j.aquatox.2003.10.002
Cid, 1996, Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry, Cytometry, 25, 32, 10.1002/(SICI)1097-0320(19960901)25:1<32::AID-CYTO4>3.0.CO;2-G
Feng, 2018, Physi-ecological responses of Microcystis aeruginosa to phenanthrene exposure, Resour. Environ. Yangtze Basin, 27, 2031
Franklin, 2001, Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry, Arch. Environ. Contam. Toxicol., 40, 469, 10.1007/s002440010199
Gan, 2012, The role of microcystins in maintaining colonies of bloom-forming Microcystis spp, Environ. Microbiol., 14, 730, 10.1111/j.1462-2920.2011.02624.x
Gobler, 2020, Climate change and harmful algal blooms: insights and perspective, Harmful Algae, 91, 101731, 10.1016/j.hal.2019.101731
Ho, 2019, Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574, 667, 10.1038/s41586-019-1648-7
Hu, 2014, Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905, Ecotoxicol. Environ. Saf., 105, 121, 10.1016/j.ecoenv.2014.01.023
Huang, 2019, Cyanobacterial bioactive metabolites—a review of their chemistry and biology, Harmful Algae, 83, 42, 10.1016/j.hal.2018.11.008
Huang, 2019, Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values, Toxicon, 169, 103, 10.1016/j.toxicon.2019.09.004
Knauert, 2008, The role of reactive pxygen species in copper toxicity to two freshwater green algae, J. Phycol., 44, 311, 10.1111/j.1529-8817.2008.00471.x
Lee, 2015, Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake, Ecotoxicol. Environ. Saf., 114, 318, 10.1016/j.ecoenv.2014.05.004
Liu, 2009, Sedimentary record of hydrophobic organic compounds in relation to regional economic development: a study of Taihu Lake, East China, Environ. Pollut., 157, 2994, 10.1016/j.envpol.2009.05.056
Liu, 2015, Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels, Ecotoxicol. Environ. Saf., 111, 138, 10.1016/j.ecoenv.2014.10.011
Liu, 2015, Cellular and transcriptional responses in Microcystis aeruginosa exposed to two antibiotic contaminants, Microb. Ecol., 69, 535, 10.1007/s00248-014-0515-1
Loftin, 2016, Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007, Harmful Algae, 56, 77, 10.1016/j.hal.2016.04.001
Lu, 2014, Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress, Chemosphere, 117, 164, 10.1016/j.chemosphere.2014.06.040
Martin-Luna, 2006, Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster, Phytochemistry, 67, 876, 10.1016/j.phytochem.2006.02.005
Meng, 2019, A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China, Sci. Total Environ., 651, 2497, 10.1016/j.scitotenv.2018.10.162
Mojiri, 2019, Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments, Sci. Total Environ., 696, 133971, 10.1016/j.scitotenv.2019.133971
Mowe, 2015, Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species, Harmful Algae, 50, 88, 10.1016/j.hal.2015.10.011
2006
Peng, 2019, Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction, Ecotoxicol. Environ. Saf., 182, 109376, 10.1016/j.ecoenv.2019.109376
Piazza, 2016, Exposure to phenanthrene and depuration: changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops Nodipecten nodosus, Aquat. Toxicol., 177, 146, 10.1016/j.aquatox.2016.05.025
Qian, 2010, Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa, Aquat. Toxicol., 99, 405, 10.1016/j.aquatox.2010.05.018
Qin, 2013, Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators, Ecol. Indicat., 24, 599, 10.1016/j.ecolind.2012.08.019
Schatz, 2007, Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins, Environ. Microbiol., 9, 965, 10.1111/j.1462-2920.2006.01218.x
Seoane, 2017, Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica, Chemosphere, 171, 339, 10.1016/j.chemosphere.2016.12.097
Serodio, 2021, Photoinhibition in optically thick samples: effects of light attenuation on chlorophyll fluorescence-based parameters, J. Theor. Biol., 513, 110580, 10.1016/j.jtbi.2021.110580
Song, 2017, Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa, ISME J., 11, 1865, 10.1038/ismej.2017.45
Su, 2019, The influence of nutrients limitation on phytoplankton growth and microcystins production in Spring Lake, USA, Chemosphere, 234, 34, 10.1016/j.chemosphere.2019.06.047
Tao, 2018, Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes, Water Res., 132, 1, 10.1016/j.watres.2017.12.053
Tillett, 2000, Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system, Chem. Biol., 7, 753, 10.1016/S1074-5521(00)00021-1
Wan, 2015, Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae, J. Hazard Mater., 283, 778, 10.1016/j.jhazmat.2014.10.026
Wan, 2021, Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna), Ecotoxicol. Environ. Saf., 220, 112405, 10.1016/j.ecoenv.2021.112405
Wan, 2020, Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China, Environ. Sci. Pollut. Res. Int., 27, 45095, 10.1007/s11356-020-10384-0
Wan, 2019, Combined toxic effects of microcystin-LR and phenanthrene on growth and antioxidant system of duckweed (Lemna gibba L.), Ecotoxicol. Environ. Saf., 185, 109668, 10.1016/j.ecoenv.2019.109668
Wang, 2016, Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905, Ecotoxicol. Environ. Saf., 132, 231, 10.1016/j.ecoenv.2016.06.010
Wang, 2008, Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum, Ecotoxicol. Environ. Saf., 71, 465, 10.1016/j.ecoenv.2007.12.019
Wang, 2017, Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae, Aquat. Toxicol., 186, 67, 10.1016/j.aquatox.2017.02.022
Wu, 2021, Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production, Sci. Total Environ., 761, 143265, 10.1016/j.scitotenv.2020.143265
Wu, 2007, Response of Microcystis to copper stress: do phenotypes of Microcystis make a difference in stress tolerance?, Environ. Pollut., 147, 324, 10.1016/j.envpol.2006.05.022
Yang, 2017, Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol. Environ. Saf., 142, 29, 10.1016/j.ecoenv.2017.03.037
Zhang, 2020, Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: cytotoxic endpoints, production and release of microcystin-LR, J. Hazard Mater., 399, 123021, 10.1016/j.jhazmat.2020.123021
Zhang, 2018, PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa, Ecotoxicol. Environ. Saf., 157, 134, 10.1016/j.ecoenv.2018.03.052
Zhang, 2017, Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations, Sci. Total Environ., 575, 513, 10.1016/j.scitotenv.2016.09.011
Zhang, 2021, The latest advances in the reproductive toxicity of microcystin-LR, Environ. Res., 192, 110254, 10.1016/j.envres.2020.110254
Zhao, 2016, First identification of the toxicity of microcystins on pancreatic islet function in humans and the involved potential biomarkers, Environ. Sci. Technol., 50, 3137, 10.1021/acs.est.5b03369
Zhou, 2021, Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa, J. Hazard Mater., 420, 126591, 10.1016/j.jhazmat.2021.126591
Zhu, 2012, Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa, J. Hazard Mater., 237–238, 371, 10.1016/j.jhazmat.2012.08.029
Zilliges, 2011, The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions, PLoS One, 6, 10.1371/journal.pone.0017615