Synergistic interphase modification with dual electrolyte additives to boost cycle stability of high nickel cathode for all-climate battery
Tài liệu tham khảo
Yang, 2020, J. Electrochem., 26, 443
Cai, 2023, J. Energy Chem., 81, 593, 10.1016/j.jechem.2023.02.044
Yan, 2020, ACS Energy Lett., 5, 685, 10.1021/acsenergylett.0c00109
Xu, 2019, J. Energ. Environ. Sci., 12, 2991, 10.1039/C9EE01404G
Zhuang, 2001, J. Electrochem., 7, 403
Hou, 2022, J. Electrochem., 28, 2219007
Lyu, 2020, Energy Storage Mater., 31, 195, 10.1016/j.ensm.2020.06.042
Chen, 2022, Energy Storage Mater., 49, 493, 10.1016/j.ensm.2022.04.036
Yang, 2020, J. Power Sources, 470
Wang, 2021, Adv. Sci., 8, 2101646, 10.1002/advs.202101646
Lv, 2021, Chem. Eng. J., 418, 10.1016/j.cej.2021.129400
Yang, 2018, ACS Appl. Mater. Interfaces, 10, 31735, 10.1021/acsami.8b04743
Gupta, 2020, Adv. Energy Mater., 10, 2001972, 10.1002/aenm.202001972
Xiang, 2022, J. Phys. Chem. Lett., 13, 5151, 10.1021/acs.jpclett.2c01183
Zheng, 2018, Nano Energy, 49, 538, 10.1016/j.nanoen.2018.04.077
Fan, 2020, Nano Energy, 70, 10.1016/j.nanoen.2020.104450
Li, 2014, ACS Appl. Mater. Interfaces, 6, 4920, 10.1021/am405973x
Chen, 2022, Adv. Energy Mater., 12, 2201631, 10.1002/aenm.202201631
Zu, 2021, InfoMat., 3, 648, 10.1002/inf2.12190
Zhao, 2019, J. Mater. Chem. A, 7, 8700, 10.1039/C9TA00126C
Lu, 2015, J. Power Sources, 274, 676, 10.1016/j.jpowsour.2014.10.112
Haregewoin, 2016, Energ. Environ. Sci., 9, 1955, 10.1039/C6EE00123H
Li, 2022, ChemSusChem, 15
Zhang, 2021, ACS Appl. Energy Mater., 4, 12954, 10.1021/acsaem.1c02593
Li, 2020, ACS Appl. Mater. Interfaces, 12, 37013, 10.1021/acsami.0c05623
Xiao, 2021, ACS Sustain. Chem. Eng., 9, 1958, 10.1021/acssuschemeng.0c09241
Quan, 2023, Chem. Eng. J., 454, 10.1016/j.cej.2022.140086
Zhao, 2018, ChemSusChem, 11, 2211, 10.1002/cssc.201800706
Che, 2023, J. Power Sources, 559, 10.1016/j.jpowsour.2023.232678
Huang, 2015, J. Power Sources, 293, 71, 10.1016/j.jpowsour.2015.05.070
Yang, 2020, Adv. Funct. Mater., 30, 2004664, 10.1002/adfm.202004664
Zou, 2021, ACS Sustain. Chem. Eng., 9, 15042, 10.1021/acssuschemeng.1c05936
Ruan, 2021, Nano Energy, 90, 10.1016/j.nanoen.2021.106535
Meister, 2017, ChemSusChem, 10, 804, 10.1002/cssc.201601636
Li, 2017, Nano Energy, 40, 9, 10.1016/j.nanoen.2017.07.051
Ma, 2021, ACS Omega, 6, 31330, 10.1021/acsomega.1c05176
Chen, 2022, Small Methods, 6, 2201114, 10.1002/smtd.202201114
Zou, 2023, Adv. Energy Mater., 2300443, 10.1002/aenm.202300443
Wen, 2021, J. Phys. Chem. C, 126, 282, 10.1021/acs.jpcc.1c09488
Ge, 2019, Adv. Energy Mater., 9, 1901313, 10.1002/aenm.201901313
Wu, 2022, Adv. Energy Mater., 12, 2200337, 10.1002/aenm.202200337
Cao, 2022, Adv. Sci., 9, 2201147, 10.1002/advs.202201147
Xing, 2018, Acc. Chem. Res., 51, 282, 10.1021/acs.accounts.7b00474
Liang, 2021, J. Am. Chem. Soc., 143, 16768, 10.1021/jacs.1c08425
Qin, 2022, Nano Energy, 96, 10.1016/j.nanoen.2022.107082
Rinkel, 2015, Energ. Environ. Sci., 15, 3416, 10.1039/D1EE04053G
Dose, 2022, ACS Energy Lett., 7, 3524, 10.1021/acsenergylett.2c01722
Zhang, 2022, Energy Storage Mater., 53, 492, 10.1016/j.ensm.2022.09.032
Liu, 2021, ACS Energy Lett., 6, 2096, 10.1021/acsenergylett.1c00707
Zhao, 2021, ACS Energy Lett., 6, 2552, 10.1021/acsenergylett.1c00750
