Synergistic growth in bacteria depends on substrate complexity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Breugelmans, P., Barken, K.B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., and Springael, D. 2008. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol. Ecol. 64. 271–282.
Burmølle, M., Webb, J.S., Rao, D., Hansen, L.H., Sørensen, S.J., and Kjelleberg, S. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923.
Ciric, L., Philp, J.C., and Whiteley, A.S. 2010. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol. Lett. 303. 116–122.
D’Costa, V.M., Griffiths, E., and Wright, G.D. 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Curr. Opin. Microbiol. 10. 481–489.
Da Silva, W.J., Seneviratne, J., Parahitiyawa, N., Rosa, E.A., Samaranayake, L.P., and Del Bel Cury, A.A. 2008. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz. Dent. J. 19, 364–369.
Elias, S. and Banin, E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004.
Flint, H.J., Duncan, S.H., Scott, K.P., and Louis, P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9, 1101–1111.
Foster, K.R. and Bell, T. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850.
Freilich, S., Zarecki, R., Eilam, O., Segal, E.S., Henry, C.S., Kupiec, M., Gophna, U., Sharan, R., and Ruppin, E. 2011. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589.
Gabrielson, J., Hart, M., Jarelov, A., Kuhn, I., McKenzie, D., and Mollby, R. 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 50, 63–73.
Grossart, H.P., Schlingloff, A., Bernhard, M., Simon, M., and Brinkhoff, T. 2004. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol. Ecol. 47, 387–396.
Guevara, C. and Zambrano, M.M. 2006. Sugarcane cellulose utilization by a defined microbial consortium. FEMS Microbiol. Lett. 255, 52–58.
Hansen, S.K., Haagensen, J.A.J., Gjermansen, M., Jørgensen, T.M., Tolker-Nielsen, T., and Molin, S. 2007. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J. Bacteriol. 189, 4932–4943.
Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., and Igarashi, Y. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59, 529–534.
Hibbing, M.E., Fuqua, C., Parsek, M.R., and Peterson, S.B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25.
Hoppe, H. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11. 299–308.
Jiménez, D., Korenblum, E., and van Elsas, J. 2014. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl. Microbiol. Biotechnol. 98, 2789–2803.
Kostylev, M. and Wilson, D. 2012. Synergistic interactions in cellulose hydrolysis. Biofuels 3, 61–70.
Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M.D., and Chang, J.S. 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzym. Microb. Technol. 44, 417–425.
Long, R.A. and Azam, F. 2001. Antagonistic Interactions among Marine Pelagic Bacteria. Appl. Environ. Microbiol. 67, 4975–4983.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.
Marx, M.C., Wood, M., and Jarvis, S.C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640.
Newman, D.K. and Banfield, J.F. 2002. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296, 1071–1077.
Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., and Molin, S. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2, 59–68.
Perez, J., Munoz-Dorado, J., de la Rubia, T., and Martinez, J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63.
Rypien, K.L., Ward, J.R., and Azam, F. 2010. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39.
Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Saiya-Cork, K.R., Sinsabaugh, R.L., and Zak, D.R. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315.
Sinsabaugh, R.L., Findlay, S., Franchini, P., and Fischer, D. 1997. Enzymatic analysis of riverine bacterioplankton production. Limnol. Oceanogr. 42, 29–38.
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264.
Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24. 1596–1599.
Van Dyk, J.S. and Pletschke, B.I. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30, 1458–1480.
Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.
Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173, 697–703.
Wintermute, E.H. and Silver, P.A. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407.
Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., and Champreda, V. 2010. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb. Technol. 47, 283–290.