Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing

The Innovation - Tập 3 - Trang 100264 - 2022
Yangcan Chen1,2,3, Yanping Hu1,2,3, Xinge Wang1,2,3, Shengqiu Luo1,2,3, Ning Yang1,2,3, Yi Chen1,2,3, Zhikun Li1,3,4, Qi Zhou1,2,3,4, Wei Li1,2,3,4
1State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
4Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China

Tài liệu tham khảo

Makarova, 2020, Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 18, 67, 10.1038/s41579-019-0299-x Liu, 2019, CasX enzymes comprise a distinct family of RNA-guided genome editors, Nature, 566, 218, 10.1038/s41586-019-0908-x Yan, 2019, Functionally diverse type V CRISPR-Cas systems, Science, 363, 88, 10.1126/science.aav7271 Pausch, 2020, CRISPR-CasΦ from huge phages is a hypercompact genome editor, Science, 369, 333, 10.1126/science.abb1400 Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038 Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299 Strecker, 2019, Engineering of CRISPR-Cas12b for human genome editing, Nat. Commun., 10, 212, 10.1038/s41467-018-08224-4 Kleinstiver, 2019, Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing, Nat. Biotechnol., 37, 276, 10.1038/s41587-018-0011-0 Jiang, 2017, CRISPR-Cas9 structures and mechanisms, Annu. Rev. Biophys., 46, 505, 10.1146/annurev-biophys-062215-010822 Lazzarotto, 2020, CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity, Nat. Biotechnol., 38, 1317, 10.1038/s41587-020-0555-7 Strohkendl, 2021, Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin, Sci. Adv., 7, 10.1126/sciadv.abd6030 Huang, 2020, Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2, Nat. Commun., 11, 5241, 10.1038/s41467-020-19072-6 Walton, 2020, Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants, Science, 368, 290, 10.1126/science.aba8853 Nishimasu, 2018, Engineered CRISPR-Cas9 nuclease with expanded targeting space, Science, 361, 1259, 10.1126/science.aas9129 Page, 1977, Entropy, binding energy, and enzymic catalysis, Angew. Chem. Int. Ed., 16, 449, 10.1002/anie.197704491 Zhang, 2020, Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease, Nat. Struct. Mol. Biol., 27, 1069, 10.1038/s41594-020-0499-0 Teng, 2018, Repurposing CRISPR-Cas12b for mammalian genome engineering, Cell Discov., 4, 63, 10.1038/s41421-018-0069-3 Yang, 2016, PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease, Cell, 167, 1814, 10.1016/j.cell.2016.11.053 Tang, 2019, Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells, Cell Regen., 8, 44, 10.1016/j.cr.2019.08.002 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Kleinstiver, 2015, Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition, Nat. Biotechnol., 33, 1293, 10.1038/nbt.3404 Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001 Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117 Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227 Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526 Xu, 2021, Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing, Mol. Cell, 81, 4333, 10.1016/j.molcel.2021.08.008 Takeda, 2021, Structure of the miniature type V-F CRISPR-Cas effector enzyme, Mol. Cell, 81, 558, 10.1016/j.molcel.2020.11.035 Kim, 2021, Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus, Nat. Biotechnol., 40, 94, 10.1038/s41587-021-01009-z Edraki, 2019, A compact, High-Accuracy Cas9 with a dinucleotide PAM for in vivo genome editing, Mol. Cell, 73, 714, 10.1016/j.molcel.2018.12.003 Landrum, 2014, ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res., 42, D980, 10.1093/nar/gkt1113 György, 2019, Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss, Nat. Med., 25, 1123, 10.1038/s41591-019-0500-9