Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing
Tài liệu tham khảo
Makarova, 2020, Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 18, 67, 10.1038/s41579-019-0299-x
Liu, 2019, CasX enzymes comprise a distinct family of RNA-guided genome editors, Nature, 566, 218, 10.1038/s41586-019-0908-x
Yan, 2019, Functionally diverse type V CRISPR-Cas systems, Science, 363, 88, 10.1126/science.aav7271
Pausch, 2020, CRISPR-CasΦ from huge phages is a hypercompact genome editor, Science, 369, 333, 10.1126/science.abb1400
Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038
Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299
Strecker, 2019, Engineering of CRISPR-Cas12b for human genome editing, Nat. Commun., 10, 212, 10.1038/s41467-018-08224-4
Kleinstiver, 2019, Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing, Nat. Biotechnol., 37, 276, 10.1038/s41587-018-0011-0
Jiang, 2017, CRISPR-Cas9 structures and mechanisms, Annu. Rev. Biophys., 46, 505, 10.1146/annurev-biophys-062215-010822
Lazzarotto, 2020, CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity, Nat. Biotechnol., 38, 1317, 10.1038/s41587-020-0555-7
Strohkendl, 2021, Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin, Sci. Adv., 7, 10.1126/sciadv.abd6030
Huang, 2020, Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2, Nat. Commun., 11, 5241, 10.1038/s41467-020-19072-6
Walton, 2020, Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants, Science, 368, 290, 10.1126/science.aba8853
Nishimasu, 2018, Engineered CRISPR-Cas9 nuclease with expanded targeting space, Science, 361, 1259, 10.1126/science.aas9129
Page, 1977, Entropy, binding energy, and enzymic catalysis, Angew. Chem. Int. Ed., 16, 449, 10.1002/anie.197704491
Zhang, 2020, Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease, Nat. Struct. Mol. Biol., 27, 1069, 10.1038/s41594-020-0499-0
Teng, 2018, Repurposing CRISPR-Cas12b for mammalian genome engineering, Cell Discov., 4, 63, 10.1038/s41421-018-0069-3
Yang, 2016, PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease, Cell, 167, 1814, 10.1016/j.cell.2016.11.053
Tang, 2019, Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells, Cell Regen., 8, 44, 10.1016/j.cr.2019.08.002
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Kleinstiver, 2015, Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition, Nat. Biotechnol., 33, 1293, 10.1038/nbt.3404
Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001
Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117
Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227
Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526
Xu, 2021, Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing, Mol. Cell, 81, 4333, 10.1016/j.molcel.2021.08.008
Takeda, 2021, Structure of the miniature type V-F CRISPR-Cas effector enzyme, Mol. Cell, 81, 558, 10.1016/j.molcel.2020.11.035
Kim, 2021, Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus, Nat. Biotechnol., 40, 94, 10.1038/s41587-021-01009-z
Edraki, 2019, A compact, High-Accuracy Cas9 with a dinucleotide PAM for in vivo genome editing, Mol. Cell, 73, 714, 10.1016/j.molcel.2018.12.003
Landrum, 2014, ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res., 42, D980, 10.1093/nar/gkt1113
György, 2019, Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss, Nat. Med., 25, 1123, 10.1038/s41591-019-0500-9
