Synergistic effect of chitosan derivative and DOPO for simultaneous improvement of flame retardancy and mechanical property of epoxy resin

Springer Science and Business Media LLC - Tập 29 - Trang 907-925 - 2021
Junjie Wang1, Xuejun Yu2, Shengsong Dai1, Xinyu Wang1, Zhiquan Pan1,2, Hong Zhou1
1College of Chemistry and Environmental Technology, Wuhan Institute of Technology, Wuhan, China
2National Phosphorus Product Quality Supervision and Inspection Center, Three Gorges Public Inspection and Testing Center, Yichang, China

Tóm tắt

In this work, the effects of a chitosan-based derivative (CSA), DOPO (9, 10-dihydro-9-oxa-10- phosphaphenanthreene-10-oxide) and CSA-DOPO additives on the flammable properties of EP (epoxy resin) composites were systematically studied, where CSA was synthesized by a facile condensation between chitosan (CS) and 9-anthralaldehyde. The mass ratio of CS and 9-anthralaldehyde in CSA was determined by elemental analysis and theoretical calculation. Under the 8% addition in EP, EP/2.66%/5.34%DOPO sample was the only one passing the UL-94 V-0 rating and exhibiting the highest LOI value of 36.4%. The cone calorimeter test (CC) showed that the total smoke emission value and the peak heat release rate of the EP/2.66%/5.34%DOPO decreased by 36.0% and 61.9%, and the residual char amount increased by 151%, respectively, when compared with EP. Moreover, the incorporation of CSA/DOPO effectively improved the flexural strength by 52.3%. According to the results obtained from Py-GC/MS analyses for EP and EP/2.66%CSA/5.34%DOPO samples, together with Raman spectra, XPS (X-ray photoelectron spectra) for their char residues, and the real time FTIR (Fourier-transform infrared) spectra at different pyrolysis temperatures and cone calorimeters, it was proposed that CSA/DOPO played roles in both gaseous and condensed phases, and the synergistic effect of CSA and DOPO significantly improved the flame retardancy and mechanical strength of EP.

Tài liệu tham khảo